
ANDERS THORUP: PSpictures for DVIPS, 10 September 2004

Introduction.

Let a1, . . . , an be n points in the plane. A spline through the n points is a sequence of curves
parameterized by polynomials ai(t) for i = 1, . . . , n− 1, such that the curve ai(t) begins at
ai and ends at ai+1 and such that the total curve from a1 to an is smooth.

It would be desirable to be able to include in a TEX manuscript a spline with commands like
the following:

\spline{ a1 . . . an }, \cspline{ a1 . . . an }, \dspline{ a0 a1 . . . an+1 },

where the n points ai should be replaced by n pairs of coordinates. Naturally, the command
should be packed into an environment giving an interpretation of the coordinates as multiples
of a given unit length. The result of the first command should be a smooth curve through the
points on the paper determined by the n pairs of coordinates. The second command should
result in a closed spline, and the last in a directed spline: the points a0 and an+1 are control
points determining the tangents at a1 and an.

spline

an

a1
a2

cspline

an

a1
a2

dspline

an

a1
a2

an+1

a0

The Package.

This manual is the printout of a TEX file containing splines. The first part of the file is a
package defining the necessary macros. It uses Bezier cubics as the polynomials ai(t), and it
leaves the work of drawing the curves to the PostScript printer. To do so, PostScript needs,
in addition to the coordinates of the n points, the coordinates of the so called control points.
Each Bezier cubic is determined by two control points. For a spline through n points, the
coordinates of the control points are determined by two systems of linear equations with n

unknowns, see the section on splines at the end of the manual. The main innovation of the
package is to let TEX solve the two systems of linear equations.

In addition, the package defines several other macros for curve drawing. To use the package
as an input file in other TEX documents, find the following line in the file:

%\endinput

and erase the leading %. Then save the file in your favorite input directory. The macros of
the package have been tested with plain TEX, with LaTeX, and with AmSTeX. It should be
emphasized that the code resulting from the package is not portable. It assumes that DVIPS
is used for transforming the dvi file into a PostScript printable file.

1

The Macros.

• The picture command sets up the overall environment in which all curve drawing commands
have to be included. It has the following form:

\PSpicture{xdimen}{ydimen} picture-material \endPSpicture

The result of the command is a vertical (picture) box of width xdimen and height ydimen
containing the picture-material. The picture-material consists of various picture commands
setting objects in a coordinate system; by default, the origin of the coordinate system is the
lower left vertex of the picture box.

• Coordinates (and lengths) inside the picture environment are interpreted as multiples of
\PSunit. The default value is 1bp (1in=72bp),

\PSunit=1bp

It can be reset to any desired value outside the PSpicture environment. Inside the picture
environment, coordinates and lengths are real numbers in decimal notation. Numerically,
the maximal acceptable coordinate is 215 − 1. It is easy to let the two arguments, xdimen
and ydimen, determining the dimensions of the picture box, depend on the \PSunit. For
instance, \PSpicture{3.5\PSunit}{2\PSunit} is a valid start of the PSpicture
command.

• Splines are drawn with \spline, \cspline, and \dspline:

\spline{point-list}, \cspline{point-list}, \dspline{point-list}

The point-list is a space separated list of the coordinates: xcoord ycoord xcoord ycoord
. . . ycoord. In particular, the number of coordinates has to be even. In addition, it has to
be at least 6, corresponding to the coordinates of at least 3 points. The effect of \spline
is to draw a natural spline through the points a1, . . . , an given by the 2n coordinates in the
list; \cspline draws a closed spline. Finally, \dspline draws a directed spline, see the
section on splines.

The spline commands make heavy use of the TEX registers, and TEX will spend quite some
time on the computations involved when the number of points is large. For a spline through
n points, the number of dimension registers used is 4n + 5. TEX has only 256 dimension
registers, and some are in use when the spline command is started. So, depending on the TEX
dialect in use, the maximal number of points for each spline command is less than 50. The
spline commands will tell you if your number of points exceeds the maximum.

• Text may be inserted in the picture with \LTX, \RTX, \CTX:

\LTX{TeX-stuff}{xcoord ycoord}

The TeX-stuff is any horizontal TEX material. \LTX will set the TeX-stuff in an hbox left to
the point with coordinates (xcoord,ycoord), and centered vertically. Similarly,

\RTX{TeX-stuff}{xcoord ycoord}, and \CTX{TeX-stuff}{xcoord ycoord}

will, respectively, set the TeX-stuff to the rigth of the point and centered horizontally around
the point. Occasionally, the command \TX{TeX-stuff-of-width-zero}{xcoord ycoord} is
useful. In addition, the TeX-stuff may be rotated with \rotateRTX:

2

\rotateRTX{angle}{TeX-stuff}{xcoord ycoord}

rotates the TeX-stuff, placed in an hbox with its lower left point at the given coordinates,
clock-wise the specified angle around the point.

• Circles may be drawn with \PScircle:

\PScircle{xcoord ycoord radius}

The center of the circle will be (xcoord,ycoord). Us usual, the radius is interpreted as a
multiple of \PSunit.

• More generally, arcs may be drawn with \PSarc:

\PSarc{degree1 degree2}{xcoord ycoord radius}

Thus \PSarc{300 60}{0 0 1}will draw the arc of the circle (counter clockwise orien-
ted) from the point with angle−π/3 to the point with angle π/3. The command\PScircle
is equivalent to \PSarc{0 360}. \PSarcn draws clockwise.

• Piece wise linear curves may be drawn by \PSline and \PScline:

\PSline{point-list} \PScline{point-list}

The point-list has to consists of the coordinates of at least two points. For instance, \PS-
line{1 0 0 1 0 0 1 1}, in the picture environment and with \PSunit=8pt, pro-
duces this symbol: . With only two points in the list, that is, with four coordinates as
argument, \PSline draws a straight line. It is an error to give only one point in the list. A
closed polygon is drawn with \PScline.

• An arrow from one point to another may be drawn with \PSarrow:

\PSarrow{xcoord1 ycoord1 xcoord2 ycoord2}

The result is an arrow with its tip at the point (xcoord2,ycoord2). The latter point has to
be different from the first point in the list, since otherwise the direction of the arrowhead is
undefined.

• Marks can be set at the points supporting the spline commands and the line commands.

\putPSmarks \putTeXmarks

After \putPSmarks, a small circle is drawn around the points in the list of the following
spline and line commands. After \putTeXmarks, a small black square is drawn. The
default is to set no marks, and it can be obtained by \nomarks.

• A list of points, and in particular a single point, can be marked using

\TeXmark{point-list} \PSmark{point-list}

The result is a mark set at each point in the list.

• By default, the lower left point of the picture box is the origin of the coordinate system. It
can be reset with the command,

\llcoords{xcoord ycoord}

3

Thus, after \llcoords{2 -0.5}, the lower left point of the picture box is the point with
coordinates (2,−1/2). The change influences the following picture commands. Normally,
the \llcoords command, if present, should be one of the first commands of the picture
environment. However, if parts of the picture commands refer to different coordinate systems,
it may be convenient to use several \llcoords commands.

• Curves resulting from the various picture commands have a thickness equal to the value of
\PSlinewidth. By default,

\PSlinewidth=0.5pt

It can be given a different value globally. Inside the picture environment, it can be reset with
\setPSlinewidth:

\setPSlinewidth{dimen}

The result is a change in the value of \PSlinewidth, and it influences the following picture
commands in the same picture environment. Note that the argument to\setPSlinewidth
is a usual TEX dimension.

• The curves generated by the picture commands can be dashed. The command,

\setdash{dimen}

will make the following curves in the picture environment appear as dashed curves with
dashes of length equal to dimen. For instance, after \setdash{5\PSlinewidth}, the
dashes will have a length equal to 5 times the line width. The default is reestablished with

\nodashes

• The size of the arrowhead produced with \PSarrow can be changed:

\setPSarrowheadlength{dimen}

As a default, the length of the arrow head is equal to 10 times the \PSlinewidth.

• With \putTeXmarks or \TeXmark, the points are actually marked with the content of
\markbox defined as

\def\markbox{\hss\vrule height 3\PSlinewidth

width 3\PSlinewidth\hss}

It is easy to redefine \markbox to produce different marks. With \putPSmarks, each
point is marked with a small filled circle of radius equal to \PSmarkradius. The value of
this dimension register is called whenever a PSmark is set, so you may change the value of
\PSmarkradius at any time. The default value is set as follows:

\PSmarkradius=2\PSlinewidth,

but if you want this coupling between the size of the marks and the width of the curves, you
have to repeat the above setting after each use of \setPSlinewidth.

• The PostScript interpreter can be addressed directly with the command \PS:

\PS{PostScript commands}

4

For instance, the command

\PS{newpath 0 1 moveto 2 3 4 5 6 7 curveto stroke}

will draw a Bezier cubic from (0, 1) to (6, 7). It is easy to make syntax errors addressing
PostScript directly. The result of a syntax error will most probably be that the printing process
is stopped.

• Actually, each of the curve macros (\spline, \PSline, \PSarc, etc) described in this
package results in PostScript code defining a path in the PostScript memory. The beginning
of the code is the expansion of the control sequence \newpath, and the end of the code
is the expansion of \stroke. The default effects of the expansions of these two control
sequences are, respectively, to start a new path and to stroke the current path. In fact,

\def\newpath{\PS{newpath}} \def\stroke{\PS{stroke}}

However, with some knowledge of the PostScript language, you may redefine the two control
sequences to obtain different effects. For instance, after

\def\stroke{\PS{gsave 0.8 setgray fill grestore stroke}}

each of the following curves generated by the curve macros will have their enclosed area filled
with gray before the curve is stroked. Also, with temporary settings like \let\newpath=
\relax, \let\stroke=\relax, you may combine several curves into a single path
object. Three commands deal directly with combinations of paths:

\subpaths \longpath{xcoord ycoord} \shortpaths

After the first macro, \subpaths, each of the following curve macros will add a subpath to
the current path. These curve macros are typically mixed with occurrences of the two other
macros: After \shortpaths, each curve macro will contribute with a single subpath,
and after \longpath each curve macro will append to the subpath started at the point
(xcoord, ycoord), with the beginning of the curve connected with a straight line to the end
of the previous curve. (Note that the arc defining commands need a little special care: even
after the command \shortpaths, you have to specify where the arc begins: use \PS{0
2 moveto}\PSarc{90 180}{0 0 2}} to make sure that the arc starts at the point
(0, 2) (as intended). Also, as the PSmarks are drawn with small circles, don’t use them after
\shortpaths.)

When the path has been created, you have to instruct PostScript explicitly on what to do with
the path, for instance to fill it with \PS{fill} (or \PS{eofill}), or to stroke it with
\PS{stroke}. In addition, you may want to restore the defaults with

\normalpaths

For instance, in the following code

\def\stroke{\PS{gsave 1 setgray fill grestore}}

\PScircle{0 0 1}\PScline{0 0 1 0 1 2 0 2}\normalpaths

the \PScircle produces a white disk and the \PScline a white rectangle. Figures like
this may be used to cover parts of previously set black material.

• The picture commands are meant to be used inside the picture environment. If used outside,
most of them will provoke mysterious syntax errors, typically of the form

! Undefined control sequence.

... \c@l

5

Examples.

• A closed spline through 4 points on a circle, and through 6 points:

The drawing was produced with the following code:
\centerline{\PSunit=1truecm \PSpicture{6\PSunit}{2\PSunit}
\putPSmarks
\llcoords{-1 -1}
\cspline{
1 0
0 1
-1 0
0 -1}
\llcoords{-5 -1}
\putTeXmarks
\cspline{
1 0
0.5 0.8660
-0.5 0.8660
-1 0
-0.5 -0.8660
0.5 -0.8660}
\endPSpicture}

The \centerline centers the picture on the paper. Note the double use of the command
\llcoords. With respect to the second circle, the lower left point of the picture box has
coordinates (−5,−1). The second spline is quite close to a circle, the first is not. The same
code, with no marks, and an additional “true circle” drawn with \PScircle{0 0 1} for
each of the two parts, produces the following:

• The sine function from 0 to 2π , drawn as a natural spline through 10 points of distance
2π/9. The coordinates of the 10 points were extracted from a table of the sine function.

x

t

x = sin t

The spline for the sine function was produced by the following code:

6

\centerline{\PSunit=1truecm
\PSpicture{7.2\PSunit}{2.4\PSunit}
\llcoords{0 -1.2}
\PSarrow{0 0 7 0}
\PSarrow{0 -1 0 1}
\putPSmarks
\spline{
0 0
0.6981 0.6428

plus 7 more pairs of coordinates: t sin t

6.2830 0.0000
}
\TX{ x\hss}{0 1}
\TX{ t\hss}{7 0}
\TX{ $x=\sin t$\hss}{5 0.5}
\endPSpicture}

• The corresponding spline for the cosine is rather poor near the end points:

x = cos t

The misbehavior is caused by the fact that the cosine function has non vanishing second
order derivatives at 0 and 2π . So the natural spline gives a poor approximation at the end
points. With more supporting points the result is better. And with a directed spline, giving
the horizontal tangents at the end points via two extra control points, fewer points are needed:

x = cos t x = cos t

• The 6 points on the circle in a different order, with various strokes:

Square

7

The square above was produced by the following code:
\centerline{\PSunit=5mm
\PSpicture{4.5\PSunit}{4\PSunit}

\setPSlinewidth{2mm}
\PScline{0 0 4 0 4.5 4 0.5 4}
\TX{\hss \sl Square\hss}{2.25 2}

\endPSpicture}

• A dirty trick: The drawing

was made as follows: First, the two curves of the drawing were produced by two splines:

\spline{0 1 3 2 4 5 8 2 10 0} \spline{10 3 8 2 3 2 0 3}

Note that the two points of intersection, (3, 2) and (8, 2), appear in both point lists. When
compiled, the two splines resulted in PostScript code, easily found in a special command in
the dvi file:

newpath 0.0 1.0 moveto
1.26195 1.006 2.52391 1.012 3.0 2.0 curveto
3.47609 2.988 3.16669 4.95839 4.0 5.0 curveto
4.83331 5.04161 6.80963 3.15477 8.0 2.0 curveto
9.19037 0.84523 9.59546 0.42259 10.0 0.0 curveto
stroke

newpath 10.0 3.0 moveto
9.64455 2.60002 9.28911 2.20006 8.0 2.0 curveto
6.71089 1.79994 4.48886 1.8 3.0 2.0 curveto
1.51114 2.2 0.75554 2.6001 0.0 3.0 curveto
stroke

It is easy to identify from this code the 4+3 Bezier cubics forming the two curves. In particular,
it was easy to extract the PostScript code of the 3 Bezier cubics forming the boundary of the
shaded region. In turn, this extract was inserted with shading commands directly in the tex
file, before the two spline commands, as follows:

\PS{newpath 3.0 2.0 moveto
3.47609 2.988 3.16669 4.95839 4.0 5.0 curveto
4.83331 5.04161 6.80963 3.15477 8.0 2.0 curveto
6.71089 1.79994 4.48886 1.8 3.0 2.0 curveto
gsave 0.8 setgray fill grestore}

Splines.

A possible choice of the curves ai(t) in the general spline problem is to let each be a Bezier
cubic. Assume given, in addition to the two points ai and ai+1, two control points zi and wi .
Then, by definition, the Bezier cubic from ai to ai+1 determined by the two control points is
the cubic curve ai(t) for 0 ≤ t ≤ 1 given by the polynomial,

ai(t) = ai(1− t)3 + 3zi t (1− t)2 + 3wit
2(1− t)+ ai+1t

3.

8

At the extremal points, the values are ai(0) = ai and ai(1) = ai+1, and the derivatives are
a′i (0) = 3(zi − ai) and a′i(1) = 3(−wi + ai+1). Thus the two control points determine the
tangents at the extremal points. More precisely, the vector from ai to zi is one third of the
derivative a′i (0) and the vector from wi to ai+1 is one third of the derivative a ′i (1).

ai

zi

wi

ai+1

For cubic splines, the condition of smoothness is that the total curve is two times continuously
differentiable. For the Bezier cubic above, the derivatives are given by the equations,

a′i (t)/3 = [zi − ai](1− t)2 + 2[wi − zi]t (1− t)+ [ai+1 − wi]t2,

a′′i (t)/6 = [−2zi + wi + ai](1− t)+ [zi − 2wi + ai+1]t .

In particular, the condition of continuity for the first order derivatives, a ′i (1) = a′i+1(0) for
i = 1, . . . , n− 2, is the following set of n− 2 equations,

wi + zi+1 = 2ai+1.

It is natural to define zn := 2an −wn−1. Then the n− 1 control points wi are determined by
the n points zi through the equations above. So, the sequences of Bezier cubics ai(t) forming
a differentiable curve from a1 to an are parameterized by the sets of n points zi .

In terms of the zi , the second order derivatives at the extremal points are given as follows, for
i = 1, . . . , n− 1,

a′′i (0)/6 = −2zi − zi+1 + ai + 2ai+1, a′′i (1)/6 = zi + 2zi+1 − 3ai+1.

Hence, the condition of continuity for the second order derivatives, a ′′i (1) = a′′i+1(0), is the
following set of equations,

(*) zi + 4zi+1 + zi+2 = 4ai+1 + 2ai+2, i = 1, . . . , n− 2.

To determine the spline completely, we need two more independent conditions on the n

control points zi . One natural choice is to require that the second order derivatives vanish at
the extremal points a1 and an, that is, a′′1 (0) = 0 and a′′n−1(1) = 0. It imposes the following
two conditions on the zi :

(**) 2z1 + z2 = a1 + 2a2, zn−1 + 2zn = 3an.

The spline through a1, . . . , an determined by the equations (*) and (**) is called the natural
spline. It should be emphasized that there are other natural conditions to impose on a spline.
For instance, the spline is determined by giving the tangents at the two extremal points, or,
equivalently, by giving the first control point z1 and the last control point wn−1 = 2an − zn.
We will call this spline the directed spline. In the package, the two control points are given
by adding two extra points, a0 and an+1, to the list of points ai , with the interpretation that
z1 − a1 = a1 − a0 and zn = an+1; so we add the following equations:

(***) z1 = 2a1 − a0, zn = an+1.

9

A third possibility is to determine the spline by the condition that the second order derivatives
at the extremal points a1 and an are, respectively, equal to the second order derivatives at the
(nearby) points a2 and an−2. The latter condition replaces (***) by the following equations:

z1 + z2 = (a1 + 5a2)/3, zn−1 + zn = (an−1 + 5an)/3.

This third possibility is not implemented in the package.

A different problem is to look for a closed spline, that is, to look for an additional cubic
an(t) connecting an to a1. The further condition is then that the total closed curve is smooth.
Reading the indices modulo n, the further condition simply adds the two equations (*) for
i = n− 1 and i = n.

There are several reasons for choosing (Bezier) cubics to define the spline. The most important
is simply that the PostScript printer is able to draw a Bezier cubic given the coordinates of
the four points. This package implements the natural spline and the closed spline.

Solution of the equations.

The set of linear equations for the control points zi , for the natural spline, for the directed
spline, and for the closed spline, have a unique solution. For the natural spline, the equations
are (*) and (**), and the matrix of coefficients is tridiagonal:

⎡
⎢⎢⎢⎢⎢⎣

2 1
1 4 1

. . .
. . .

. . .

1 4 1
1 2

⎤
⎥⎥⎥⎥⎥⎦

The equations (*) and (**) are solved by Gaussian elimination resulting in the following
algorithm (where the reciprocals of the diagonal elements are stored in the factors fi):

SPLINE: input n, a1, . . . , an

registers i, z1, . . . , zn, f1, . . . , fn

(initialize) f1 ← 1/2 , z1← a1 + 2a2
(forward loop) for i = 2, . . . , n− 1 do

zi ← 4ai + 2ai+1 − zi−1fi−1
fi ← 1/(4− fi−1)

end
(finish) zn← 3an − zn−1fn−1 , fn ← 1/(2− fn−1)

(solve) zn← znfn

(loop) for i = n− 1, . . . , 2, 1 do
zi ← (zi − zi+1)fi

end
output z1, . . . , zn

In the loop, the factor fi converges to 2 − √3 ≈ 0.3. So the multiplications by fi and the
inversions of 4− fi cause no problems of arithmetic overflow.

10

For the closed spline, the equations (*) modulo n give a more complicated matrix:

⎡
⎢⎢⎢⎢⎢⎣

4 1 1
1 4 1

. . .
. . .

. . .

1 4 1
1 1 4

⎤
⎥⎥⎥⎥⎥⎦

and a more complicated algorithm (the factor fn is inverted at the end of the forward loop):

CSPLINE: input n, a1, . . . , an

registers i, z1, . . . , zn, f1, . . . , fn, q1, . . . , qn

(initialize) f1 ← 1/2 , q1← 1 , z1← 4a1 + 2a2 , fn← 4 , zn← 4an + 2a1
(forward loop) for i = 2, . . . , n− 1 do

zi ← 4ai + 2ai+1 − zi−1fi−1
qi ←−qi−1fi−1 , fi ← 1/(4− fi−1)

fn ← fn + qiqi−1 , zn← zn + qizi−1
end

(finish) qn←−(1+ qn−1)fn−1, zn← zn + qnzn−1
fn ← fn + qn(1+ qn−1) , fn← 1/fn

(solve) zn← znfn

(loop) for i = n− 1, . . . , 2, 1 do
zi ← (zi − zi+1 − qizn)fi

end
output z1, . . . , zn

Finally, for the directed spline, the equations (*) and (***) correspond to the following matrix:

⎡
⎢⎢⎢⎢⎢⎣

1
1 4 1

. . .
. . .

. . .

1 4 1
1

⎤
⎥⎥⎥⎥⎥⎦

The equations (*) and (***) are solved by the following algorithm:

DSPLINE: input n, a0, a1, . . . , an, an+1
registers i, z1, . . . , zn, f2, . . . , fn−1

(initialize) f2 ← 1/4, z1← 2a1 − a0, z2 ← 4a2 + 2a3 − z1
(forward loop) for i = 3, . . . , n− 1 do

zi ← 4ai + 2ai+1 − zi−1fi−1
fi ← 1/(4− fi−1)

end
(finish) zn← an+1
(loop) for i = n− 1, . . . , 3, 2 do

zi ← (zi − zi+1)fi

end
output z1, . . . , zn

11

Implementation.

The three algorithms are implemented in the package. First, while reading the arguments
to \spline, the arguments are stored in dimension registers A allocated dynamically. The
factors f appearing in the algorithms are stored in count registers F as the integers F := f ∗B,
where the base is B = 215. This choice of base allows the square B2 to be a valid TEX
integer, and it allows the following procedure for the multiplications z ∗ f in the algorithm:
split z into z = zh ∗ B + zl where the two “digits” zh and zl are less than B. Then
zf = zh ∗F + zl ∗F/B. Similarly, the inversion f ← (m− f)−1 (where m = 2 or m = 4)
is obtained as F ← B2/(mB − F). The factors q appearing in the other algorithms are
treated similarly.

The count registers F and the dimension registers Z are allocated during the forward loop.
Finally, when the equations are solved, the contents of the relevant registers are passed to the
PostScript interpreter in a \special.

The main part of the TEX-code was written in 1995. The code implementing the DSPLINE
algorithm was written by Ulrik Buchholtz in September 2003. The code for determining the
PSmarkradius was changed as described above in October 2003. Compared to the previous
version, the default circles produced by \PSmark and \putPSmarks have doubled their
sizes.

Anders Thorup

12

