THREE PERSECTIVES ON DELIGNE COHOMOLOGY

DUSTIN CLAUSEN

Contents

1. Talk 1: Deligne cohomology	1
1.1. Motivation	1
1.2. Applications	3
1.3. Goals of this lecture series	3
2. Talk 2: Complex manifolds from a new perspective (joint with P. Scholze)	4
3. Talk 3: Quasicoherent sheaves in complex geometry (joint with P. Scholze)	7
4. Talk 4: Cohomology theories on complex manifolds (joint with P. Scholze)	9

1. Talk 1: Deligne cohomology

Deligne cohomology is a cohomology theory for complex manifolds which refines the usual singular/sheaf cohomology $H^*(M; \mathbb{Z})$ by including some differential form data.

1.1. Motivation. Let V be a holomorphic vector bundle over a complex manifold M. Then we get a complex topological vector bundle on the topological space M, hence a Chern class $c_p(V) \in \mathrm{H}^{2p}(M;\mathbb{Z})$.

We want refined coefficients $\mathbb{Z}(p)_{\mathrm{D}}$ which maps to \mathbb{Z} such that $c_p(V) \in \mathrm{H}^{2p}(M;\mathbb{Z})$ functorially (with respect to pullback of vector bundles) lifts to $\mathrm{H}^{2p}(M;\mathbb{Z}(p)_{\mathrm{D}})$.

Remark 1.1. Why do the coefficients depend on p? Note that $c_1(\mathcal{L}) \in \mathrm{H}^2(M; \mathbb{Z})$, where \mathbb{Z} should be identified with $\mathrm{H}_1(\mathbb{C}^{\times}; \mathbb{Z}) \cong 2\pi i \mathbb{Z} \subseteq \mathbb{C}$.

Similarly, we should have $c_p(V) \in \mathrm{H}^{2p}(M; (2\pi i)^p \mathbb{Z}).$

To define $\mathbb{Z}(p)_{\mathrm{D}}$, let us look at first Chern classes:

 $c_1(V) = c_1(\det(V)).$

One description is the following: The short exact sequence

$$0 \to 2\pi i\mathbb{Z} \to \mathcal{O} \xrightarrow{\exp} \mathcal{O}^{\times} \to 1.$$

gives a map $\mathrm{H}^1(M; \mathcal{O}^{\times}) \to \mathrm{H}^2(M; 2\pi i\mathbb{Z})$. This suggests setting

$$\mathbb{Z}(1)_{\mathrm{D}} = \mathcal{O}^{\times}[-1].$$

Reinterpretation: We have a homotopy pullback (because the cofibers on both horizontal maps identify with \mathcal{O}):

where $\Omega_{dR} := (\Omega^{\bullet}, d)$ is the holomorphic de Rham complex.

Definition 1.2. For $p \in \mathbb{Z}$, $p \ge 0$, define

where on the left Ω^p sits in homological degree -p.

Example 1.3. (i) $\mathbb{Z}(0)_D = \mathbb{Z};$

- (ii) $\mathbb{Z}(1)_{\mathrm{D}} = \mathcal{O}^{\times}[-1]$, which implies that there is a tautological Chern class $c_1(\mathcal{L}) \in \mathrm{H}^2(M; \mathbb{Z}(1)_{\mathrm{D}})$.
- (iii) $\bigoplus_p \mathbb{Z}(p)_D$ is a graded commutative ring, i.e., there is a map $\mathbb{Z}(p)_D \otimes \mathbb{Z}(q)_D \to \mathbb{Z}(p+q)_D$.
- (iv) Pullback functoriality: for each $M \to N$ there is a map $H^*(N; \mathbb{Z}(p)_D) \to H^*(M; \mathbb{Z}(p)_D)$.
- (v) Projective bundle formula: Let $V \to M$ be a vector bundle of dimension d and consider its projectivization $\mathbb{P}(V) \to M$. Then

$$\bigoplus_{p} \mathrm{R}\Gamma(\mathbb{P}(V);\mathbb{Z}(p)_{\mathrm{D}})$$

is graded free of rank d over $\bigoplus_p \mathrm{R}\Gamma(M;\mathbb{Z}(p)_{\mathrm{D}})$ on $1, c_1(\mathcal{O}(1)), \ldots, c_1(\mathcal{O}(1))^{d-1}$.

By Grothendieck, we can expand $c_1(\mathcal{O}(1))^d$ in terms of previous powers, and the coefficients define the higher Chern classes $c_p(V) \in \mathrm{H}^{2p}(M; \mathbb{Z}(p)_{\mathrm{D}})$.

Example 1.4. If $p \leq 0$, then $\mathbb{Z}(p)_{\mathrm{D}} = (2\pi i)^p \mathbb{Z}$, which is "purely topological". If $p > \dim M$, then $\mathbb{Z}(p)_{\mathrm{D}} = \mathbb{C}/(2\pi i)^p \mathbb{Z}[-1]$.

Remark 1.5. Let M be Stein (i.e., a closed submanifold $M \hookrightarrow \mathbb{C}^N$). Then Ω^i is acyclic and hence $\mathrm{H}^p(F^p\Omega_{\mathrm{dR}}) = \Omega^p_{\mathrm{cl}}$ is the space of holomorphic closed *p*-forms (these are huge vector spaces!).

If M is compact, then $\dim_{\mathbb{C}}(\bigoplus_{i,p} \mathrm{H}^{i}(M; \Omega^{p})) < \infty$ and hence the Deligne cohomology groups are always built out of \mathbb{Z} 's and \mathbb{C} 's by extensions and quotients.

If M is compact Kähler (e.g., a smooth projective variety over \mathbb{C}), then the map

$$\mathrm{H}^*(M; F^p\Omega_{\mathrm{dR}}) \to \mathrm{H}^*(M; \Omega_{\mathrm{dR}}) \simeq \mathrm{H}^*(M; \mathbb{C})$$

is injective. The image is $F^{p}H^{*}(M;\mathbb{C})$ in the Hodge filtration. Thus, we have a short exact sequence

$$0 \to \frac{\mathrm{H}^{i-1}(M;\mathbb{C})}{F^{p}\mathrm{H}^{i-1}(M;\mathbb{C}) + \mathrm{H}^{i-1}(M;(2\pi i)^{p-1}\mathbb{Q})} \to \mathrm{H}^{i}(M;\mathbb{Q}(p)_{\mathrm{D}}) \to F^{p}\mathrm{H}^{i}(M;\mathbb{C}) \cap \mathrm{H}^{i}(M;(2\pi i)^{p}\mathbb{Q}) \to 0,$$

which we view as an extension of something "discrete" by something "continuous".

When i = 2p, the left hand side is $J^p(M)_{\mathbb{Q}}$, that is, Griffith's intermediate Jacobian; for p = 1 this is the usual Jacobian.

 $\mathbf{2}$

1.2. Applications.

- (i) One application, the intermediate Jacobians $J^{p}(M)$, were already mentioned.
- (ii) Secondary characteristic classes of flat bundles

also called the Chern–Simons invariants.

(iii) Arithmetic: Let $\mathcal{X} \to \operatorname{Spec}(\mathbb{Z})$ be a regular proper scheme over \mathbb{Z} . Then \mathcal{X} should not be thought of as compact, because $\operatorname{Spec}(\mathbb{Z})$ is not compact ($\operatorname{Spec}(\mathbb{Z})$ corresponds to the affine line $\operatorname{Spec}(\mathbb{F}_p[T]) = \mathbb{A}^1_{\mathbb{F}_p}$.

There is a small neighborhood around $\infty \in \mathbb{P}^1_{\mathbb{F}_p}$ corresponding to $\mathbb{F}_p[T] \to \mathbb{F}_p((T^{-1}))$ (which which should be thought of as corresponding to the inclusion $\{0\} \to \mathbb{R}$).

On \mathcal{X} , we should consider not just cohomology, but "compactly supported cohomology", namely

$$\operatorname{fib}(\operatorname{R}\Gamma(\mathcal{X}) \to \operatorname{R}\Gamma(\mathcal{X}(\mathbb{C})/C_2))$$

The idea of Arakelov theory is the following: If "cohomology" means motivic cohomology, then $R\Gamma(\mathcal{X}(\mathbb{C}))$ should be Deligne cohomology.

Example 1.6. Consider the motivic cohomology

$$\mathrm{H}^{i}_{\mathrm{M}}(\mathrm{Spec}(\mathbb{Z});\mathbb{Q}(p)) \to \mathrm{H}^{i}(*_{\mathbb{C}};\mathbb{Q}(p)_{\mathrm{D}})^{C_{2}}.$$

In weights p > 1, (by Borel) the left hand side is non-zero if and only if i = 1 and p is odd, in which case it is a one-dimensional \mathbb{Q} -vector space. The right hand side is non-zero if and only if i = 1 and p is odd, in which case it is isomorphic to $\mathbb{C}/(2\pi i)^p \mathbb{Q} \xrightarrow{\text{Re}} \mathbb{R}$. The image of the induced map $\mathbb{Q} \to \mathbb{R}$ can be identified with $\pi^2 \zeta(p) \mathbb{Q}$, where ζ is the Riemann ζ -function.

1.3. Goals of this lecture series.

- (a) We want to make precise the idea that Deligne cohomology is the analog of motivic cohomology for complex manifolds.
- (b) A second goal is to understand the Hodge conjecture: For a complex smooth projective manifold M we have:

We want to modify $K_0(\operatorname{Vect}(M))$ using continuous K-theory to get a theory where it is reasonable to conjecture that $K_0(\operatorname{Nuc}(M))_{\mathbb{Q}} \xrightarrow{\sim} \bigoplus_p \operatorname{H}^{2p}(M; \mathbb{Q}(p)).$

(c) A third goal is to make Riemann–Roch more transparent.

2. TALK 2: COMPLEX MANIFOLDS FROM A NEW PERSPECTIVE (JOINT WITH P. SCHOLZE)

Let M be a complex manifold. The Deligne cohomology of M was defined as a complex $\mathbb{Z}(p)_{D}$ of sheaves, for any $p \in \mathbb{Z}$, given by the pullback



Main goal: "Fix" the fact that

$$K_0(\operatorname{Vect}(M)) \to \bigoplus_p \operatorname{H}^{2p}(M; \mathbb{Z}(p)_{\mathbb{D}})$$

is far from being an isomorphism by replacing $K(\operatorname{Vect}(M))$ with $K^{\operatorname{cont}}(\operatorname{Nuc}(M))$. Here, $\operatorname{Nuc}(M)$ is some version of $D_{\operatorname{ac}}(M)$.

Idea: make it more like scheme theory: Start with a class of rings, R, which will determine everything: there is

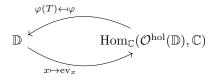
- an underlying topological space,
- a structure sheaf of holomorphic functions,
- a de Rham complex,
-

The basic example of an R will be

$$\mathcal{O}^{\text{hol}}(\mathbb{D}) = \left\{ \sum_{n} c_n T^n \, \middle| \, \exists r > 1 \text{ such that } \sum_{n} |c_n| r^n \to \infty \right\},\$$

where $\mathbb{D} \subseteq \mathbb{C}$ is the *closed* unit disk and \mathcal{O}^{hol} denotes the functions which are holomorphic in a neighborhood of \mathbb{D} .

Good news! The abstract algebra $\mathcal{O}^{\text{hol}}(\mathbb{D})$ determines \mathbb{D} . More precisely, there are mutually inverse maps



Proof. We need:

- (i) $\varphi(T) \in \mathbb{D}$. Suppose $\lambda \in \mathbb{C} \setminus \mathbb{D}$. Then $\frac{1}{T-\lambda} \in \mathcal{O}^{\text{hol}}(\mathbb{D})$, that is, $T \lambda$ is a unit, hence so is $\varphi(T \lambda) = \varphi(T) \varphi(\lambda) \neq 0$, which is a contradiction.
- (ii) φ is determined by $\varphi(T)$. This follows from the claim that

$$\lim_{N \to \infty} \varphi \left(\sum_{n \le N} c_n T^n \right) = \varphi \left(\sum_n c_n T^n \right).$$

The same argument as above shows that $\varphi(\sum_{n>N} c_n T^n) \in \varepsilon \mathbb{D}$ for N such that $\sum_{n>N} |c_n| < \varepsilon$.

Definition 2.1. Let R be a \mathbb{C} -algebra. Define

$$\mathcal{M}_B(R) = \operatorname{Hom}_{\mathbb{C}}(R, \mathbb{C}) \subseteq \prod_{f \in R} \mathbb{C}$$

with the product topology.¹

Claim. Both maps above are continuous.

The proof of the claim is (more or less) obvious. We now have that

$$\mathbb{D} = \mathcal{M}_B(\mathcal{O}^{\mathrm{hol}}(\mathbb{D})).$$

Bad news: We cannot get a structure sheaf, de Rham cohomology etc. just from the abstract \mathbb{C} -algebra structure on $\mathcal{O}^{hol}(\mathbb{D})$. The most basic reason is that

$$\mathcal{O}^{\mathrm{hol}}(\mathbb{D})\otimes_{\mathbb{C}}\mathcal{O}^{\mathrm{hol}}(\mathbb{D})
eq\mathcal{O}^{\mathrm{hol}}(\mathbb{D}^2),$$

where $\otimes_{\mathbb{C}}$ is the abstract tensor product.

Solution: remember the topological vector space structure on $\mathcal{O}^{\text{hol}}(\mathbb{D})$ and use the *completed* tensor product $\otimes_{\mathbb{C}}$. Or rather, use a category-friendly version thereof.

Concretely, this means that "topological" vector spaces are replaced with "light condensed" C-vector spaces; then completeness corresponds to "gaseous".

Definition 2.2. A light condensed abelian group is a presheaf of abelian groups on $Pro(Fin)^{light}$, the category of countable inverse limits of finite sets, satisfying descent with respect to (1) finite coproducts and (2) surjections $S \rightarrow T$.

Exercise: We have that $\mathbb{N} \cup \{\infty\}$ lies in $\operatorname{Pro}(\operatorname{Fin})^{\operatorname{light}}$.

Example 2.3. For \mathbb{C} , there is a light condensed ring given by $S \mapsto \mathcal{C}^0(S, \mathbb{C})$, where $\mathcal{C}^0(S, \mathbb{C})$ denotes set of continuous functions from S to \mathbb{C} .

We can now consider the symmetric monoidal category

$$(\operatorname{Mod}_{\mathbb{C}}(\operatorname{CondAb}^{\operatorname{light}}), \otimes_{\mathbb{C}}).$$

We need to pass to a full subcategory of "complete" objects.

Idea: Completeness of M corresponds to the following property: if m_0, m_1, m_2, \ldots is a null sequence in M, then we can form $\sum_n m_n \cdot (1/2)^n \in M$.

Here, a *null sequence* is a map from $\mathbb{Z}[\mathbb{N} \cup \{\infty\}]/\mathbb{Z}\infty$, the free condensed abelian group on a null sequence.

Definition 2.4. A module $M \in Mod_{\mathbb{C}}(CondAb^{light})$ is called *gaseous* if the map

$$\operatorname{Null}(M) \coloneqq \operatorname{\underline{Hom}}(\mathbb{Z}[\mathbb{N} \cup \{\infty\}]/\mathbb{Z}\infty, M) \xrightarrow{1-T \cdot \frac{1}{2}} \operatorname{\underline{Hom}}(\mathbb{Z}[\mathbb{N} \cup \{\infty\}]/\mathbb{Z}\infty, M),$$

where T is induced by the shift map $\mathbb{N} \to \mathbb{N}$, $n \mapsto n+1$.

Remark 2.5. The condition for $\frac{1}{2}$ is equivalent to the condition for any λ with $0 < |\lambda| < 1$.

Theorem 2.6. The full subcategory $\operatorname{Mod}_{\mathbb{C}^{gas}} \subseteq \operatorname{Mod}_{\mathbb{C}}(\operatorname{CondAb}^{\operatorname{light}})$ of gaseous \mathbb{C} -vector spaces is abelian, closed under all colimits, limits, extensions, all $\operatorname{R}^{i} \varprojlim$, $\operatorname{L}^{i} \varinjlim$ and $\operatorname{R}^{i} \operatorname{Hom}(X, -)$, for all $X \in \operatorname{Mod}_{\mathbb{C}}(\operatorname{CondAb}^{\operatorname{light}})$.

¹The subscript "B" stands for Betti or Berkovich.

Proof. Everything follows from the (interesting) fact that $\mathbb{Z}[\mathbb{N} \cup \{\infty\}]/\mathbb{Z}\infty$ is (internally) projective in $Mod_{\mathbb{C}}(CondAb^{light})$.

Upshot:

(i) There exists a left adjoint

$$(-)^{\mathrm{gas}} \colon \mathrm{Mod}_{\mathbb{C}}(\mathrm{CondAb}^{\mathrm{light}}) \to \mathrm{Mod}_{\mathbb{C}^{\mathrm{gas}}}$$

to the inclusion,

- (ii) There exists a symmetric monoidal structure on $Mod_{\mathbb{C}^{gas}}$ making $(-)^{gas}$ symmetric monoidal.
- (iii) There is a derived analog of everything.

Example 2.7. Any Banach space over \mathbb{C} is gaseous. In particular, $\mathcal{O}^{\text{hol}}(\mathbb{D})$ is gaseous (it is a filtered union of ℓ^1 -spaces).

Theorem 2.8. The ring
$$\mathcal{O}^{\text{hol}}(\mathbb{D})$$
 is flat with respect to $-\otimes_{\mathbb{C}^{\text{gas}}} - and$
 $\mathcal{O}^{\text{hol}}(\mathbb{D}) \otimes_{\mathbb{C}^{\text{gas}}} M = \lim \text{Null}(M).$

Proof. Use trace class map tricks.

The rings R that we consider are objects of $\operatorname{CAlg}(D_{\geq 0}(\mathbb{C}^{\operatorname{gas}}))$, which we call gaseous \mathbb{C} -algebras. **Definition 2.9.** Let R be a gaseous \mathbb{C} -algebra.

(a) An element $f \in \pi_0 R(*)$ is called *topologically nilpotent* if there is a factorization

of condensed rings.

(b) R is called *pointwise bounded* if for all $f \in R$ (meaning: $f \in \pi_0 R(*)$), there exists $\lambda \in \mathbb{C}$ with $0 < |\lambda| < 1$ such that λf is topologically nilpotent.

Definition 2.10 (Rodriguez-Camargo). Let $S \in Pro(Fin)^{\text{light}}$. Then $f \in R(S)$ is uniformly topologically nilpotent if there exists a factorization

R is called *bounded* if for all S and all $f \in R(S)$, there exists $\lambda \in \mathbb{C}$ with $0 < |\lambda| < 1$ such that λf is uniformly topologically nilpotent.

Theorem 2.11 (Rodriguez-Camargo). $\operatorname{CAlg}(D_{\geq 0}(\mathbb{C}^{\operatorname{gas}}))^{\operatorname{bded}} \subseteq \operatorname{CAlg}(D_{\geq 0}(\mathbb{C}^{\operatorname{gas}}))$ is closed under all colimits and finite limits.

Example 2.12. Any Banach algebra R over \mathbb{C} is bounded. In particular, $\mathcal{O}^{\text{hol}}(\mathbb{D})$ is bounded.

Theorem 2.13. If R is pointwise bounded, then $\mathcal{M}_B(R(*))$ is compact Hausdorff and

$$D(R) \coloneqq \operatorname{Mod}_R(D(\mathbb{C}^{\operatorname{gas}}))$$

localizes along $\mathcal{M}_B(R(*))$ (the abstract \mathbb{C} -algebra underlying $\mathcal{M}_B(R)$).

3. TALK 3: QUASICOHERENT SHEAVES IN COMPLEX GEOMETRY (JOINT WITH P. SCHOLZE)

Recall, we considered $R \in \operatorname{CAlg}(D_{\geq 0}(\mathbb{C}^{\operatorname{gas}}))^{\operatorname{bded}}$, meaning that for all $f \in R$ there exists $\lambda \in \mathbb{C}^{\times}$ such that λf is topologically nilpotent and similarly for $f \in R(S)$ with $S \in \operatorname{Pro}(\operatorname{Fin})^{\operatorname{light},2}$ Clausen:Gelfand

Theorem 3.1. The category $D(R) \coloneqq \operatorname{Mod}_R(D(\mathbb{C}^{\operatorname{gas}}))$ localizes on the compact Hausdorff space $\mathcal{M}_B(R(*)) = \operatorname{Hom}_{\mathbb{C}}(R(*), \mathbb{C})$, called the Gelfand spectrum.

Note that under the boundedness condition we even have a closed embedding

$$\mathcal{M}_B(R(*)) \subseteq \prod_{f \in R(*)} \mathbb{C}_{|\cdot| \leq C_f},$$

where $C_f \in \mathbb{R}_{>0}$ depends on f.

Example 3.2. If $R = \mathcal{O}^{\text{hol}}(\mathbb{D}^n)$, then $\mathcal{M}_B(R(*)) = \mathbb{D}^n$.

Definition 3.3 (Balmer–Krause–Stevenson). Let $\mathcal{C} \in CAlg(Pr^L)$. Define a full subcategory

$$\mathrm{Idem}(\mathcal{C}) \subseteq \mathrm{CAlg}(\mathcal{C})$$

consisting of the *idempotent* algebras, i.e., algebras R such that $\mathbf{1} \to R$ induces an isomorphism $R = \mathbf{1} \otimes R \xrightarrow{\sim} R \otimes R$ (equivalently, $m \colon R \otimes R \xrightarrow{\sim} R$ is an isomorphism).

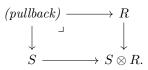
Proposition 3.4. The category $Idem(\mathcal{C})$ is a poset.³

Moreover, $Idem(\mathcal{C})$ has arbitrary colimits and finite limits, which are calculated as follows:

(1) sifted colimits are calculated in C.

(2) finite coproducts are calculated by \otimes .

(3) pullbacks are computed as the fiber product



Moreover, $Idem(\mathcal{C})$ is a locale (i.e., it satisfies the same properties as open subsets of a topological space).

A more precise version of Theorem 3.1 is the following:

Theorem 3.5. There exists a map of posets (locales^{op}?)

$$\operatorname{Closed}(\mathcal{M}_B(R)) \to \operatorname{Idem}(D(R))^{\operatorname{op}}$$

preserving finite colimits and limits.

The map is uniquely determined by the following: For all $f \in R$ and $C \in \mathbb{R}_{>0}$ it is given by

$$\begin{split} \{|f| \leq C\} &\mapsto R \otimes_{\mathbb{C}^{gas}} \mathcal{O}(C \cdot \mathbb{D})/(T - f), \\ \{|f| \geq C\} &\mapsto R \otimes_{\mathbb{C}^{gas}} \mathcal{O}(\{|M| \geq C\} \text{ merom. at } \infty)/(T - f). \end{split}$$

Explicitly, for any closed subset $K \subset \mathcal{M}_B(R)$ we get an idempotent R-algebra $\mathcal{O}(K)$.

²An analogous definition was considered by Ralf Meyer.

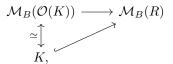
³This means that the anima of maps is either empty or contractible.

Example 3.6. Let $R = \mathcal{O}(\mathbb{D}^n)$. Then

$$\mathcal{O}(K) = \lim_{\substack{U \supseteq K \\ open}} \mathrm{R}\Gamma(U; \mathcal{O}^{\mathrm{hol}}).$$

Remark 3.7. In general, $\mathcal{O}(K)$ can live in positive and negative degrees. In practice it lives in degrees ≤ 0 .

Moreover, in general, $\{K \mid \mathcal{O}(K) \in D_{\geq 0}(\mathbb{C}^{\text{gas}})\}$ is closed under intersections and generates the topology. For any such K, we have $\mathcal{O}(K) \in \text{CAlg}(D_{\geq 0}(\mathbb{C}^{\text{gas}}))^{\text{bded}}$ and



and for $K' \subseteq K$ the idempotent algebras agree. (This is analogous to distinguished opens in algebraic geometry.)

Example 3.8. If $R = \mathcal{O}(\mathbb{D}^n)$, then $K \subseteq \mathbb{D}^n$ satisfies $\mathcal{O}(K) \in D_{\geq 0}(\mathbb{C}^{\text{gas}})$ if and only if K is holomorphic (?) convex (compact Stein).

Recall (Lurie), if X is locally compact Hausdorff and $\mathcal{C} \in \operatorname{Pr}_{\mathrm{st}}^{L}$, then

$$\operatorname{Shv}(X; \mathcal{C}) \xleftarrow{\simeq} \operatorname{Shv}_K(X; \mathcal{C}),$$

where the right hand side is the category of presheaves on compact subsets such that (1) it satisfies the sheaf condition for finite covers and (2) $\mathcal{F}(K) = \lim_{K \in K'} \mathcal{F}(K')$.

For $X = \mathcal{M}_B(R)$ one has the same if one only restricts to K such that $\mathcal{O}(K) \in D_{\geq 0}(\mathbb{C}^{gas})$.

Corollary 3.9. (a) We get a structure sheaf $\mathcal{O} \in \text{Shv}(\mathcal{M}_B(R); \text{CAlg}(D(\mathbb{C}^{\text{gas}})))$. (For $R = \mathcal{O}(\mathbb{D})$ we get the usual \mathcal{O}^{hol} .)

(b) We get a sheaf with values in $\operatorname{CAlg}(\operatorname{Pr}^L)$, given by $K \mapsto D(\mathcal{O}(K))$; this uses idempotency.

Theorem 3.10 (Automatic quasicoherence). The functor

$$D(R) \to \operatorname{Mod}_{\mathcal{O}}(\operatorname{Shv}(\mathcal{M}_B(R); D(\mathbb{C}^{\operatorname{gas}}))),$$

 $M \mapsto (K \mapsto M \otimes_R \mathcal{O}(K))$

is an equivalence.

Proof. Fully faithfulness is easy. For essential surjectivity it is enough to hit the generators " h_U ", where $U \subseteq \mathcal{M}_B(R)$ is open. These are hit by fib $(R \to \mathcal{O}(X \smallsetminus U))$.

We thus get a category $D_{qcoh}(M)$ for any complex manifold M.

Theorem 3.11. Let R be bounded. Then we can define a (derived de Rham) complex on $\mathcal{M}_B(R)$, which is also a sheaf.

Example 3.12. If $R = \mathcal{O}(\mathbb{D}^n)$, then we get back the usual de Rham complex. The key input is that $\mathbb{C}[T_1, \ldots, T_n] \hookrightarrow \mathcal{O}(\mathbb{D}^n)$ is idempotent.

Note that this also allows us to define Deligne cohomology.

Warning 3.13. The category $D(\mathbb{C}^{\text{gas}})$ is not rigid.

The fix is to pass to a full subcategory which *is* rigid. Recall that, if $C \in CAlg(Pr^L)$ is such that **1** is compact, then C is rigid if and only if C is generated by *basic nuclear* objects (which is the same as ω_1 -compact objects), i.e., objects of the form $\varinjlim(x_0 \to x_1 \to \cdots)$, where all transition maps $x_n \to x_{n+1}$ are trace class.⁴ This is not satisfied for $C = D(\mathbb{C}^{gas})$. For example, $P = \mathbb{C}^{gas}(\mathbb{N} \cup \{\infty\}/\infty)$ is compact in $D(\mathbb{C}^{gas})$. But it is not basic nuclear, because id: $P \to P$ is not trace class.

In fact, we have $P \subseteq \prod_{\mathbb{N}} \mathbb{C}$ consisting of those sequences with "quasi-exponential decay". The trace class maps in $D(\mathbb{C}^{\text{gas}})$ are generated by maps $P \to P$ which are given by a diagonal matrix with quasi-exponential decay.

Definition 3.14. Let $C \in CAlg(Pr^L)$ and assume that 1 is compact. Let

$$\operatorname{Nuc}(\mathcal{C}) \subseteq \mathcal{C}$$

be the full subcategory generated by the basic nuclear objects.

Fact 3.15. Nuc(C) is closed under \otimes , and we have $\mathbf{1} \in Nuc(C)$.

Question 3.16. Is $Nuc(\mathcal{C})$ always rigid?

In general, the answer is *no*! But the answer is yes if every trace class map factors as the composite of two trace class maps. This holds for $D(\mathbb{C}^{\text{gas}})$, i.e., $\text{Nuc}(\mathbb{C}^{\text{gas}})$ is rigid.

Theorem 3.17. (a) $\operatorname{Nuc}(\mathbb{C}^{\operatorname{gas}}) = \operatorname{Nuc}(\langle P \rangle)$. (b) Let $R \in \operatorname{CAlg}(D(\mathbb{C}^{\operatorname{gas}}))$ such that $R \in \operatorname{Nuc}(\mathbb{C}^{\operatorname{gas}})$, then

 $\operatorname{Nuc}(\operatorname{Mod}_R(D(\mathbb{C}^{\operatorname{gas}}))) = \operatorname{Mod}_R(\operatorname{Nuc}(\mathbb{C}^{\operatorname{gas}})).$

(c) $\mathcal{O}^{\mathrm{hol}}(\mathbb{D}^n) \in \mathrm{Nuc}(\mathbb{C}^{\mathrm{gas}}).$

(d) $\operatorname{Nuc}(\mathbb{C}^{\operatorname{gas}}) \subseteq D(\mathbb{C}^{\operatorname{gas}})$ is closed under countable limits.

Hence, for a complex manifold M, we can define

$$D_{\mathrm{qcoh}}(M) \supseteq \mathrm{Nuc}(M)$$

such that \mathcal{F} is nuclear if and only if $\mathcal{F}(K)$ is a nuclear $\mathcal{O}(K)$ -module for all compact K or, equivalently, $\mathcal{F}(K)$ is nuclear over \mathbb{C}^{gas} .

4. TALK 4: COHOMOLOGY THEORIES ON COMPLEX MANIFOLDS (JOINT WITH P. SCHOLZE)

Theorem 4.1. If $R \neq 0$ is pointwise bounded, then there exists a \mathbb{C} -algebra morphism $R(*) \to \mathbb{C}$.

Proof. If there were no such algebra morphism, then $R = \mathcal{O}(\mathcal{M}_B(R)) = \mathcal{O}(\emptyset) = 0$. Challenge: Give a direct proof.

Definition 4.2. We put

$$\begin{aligned} \operatorname{Shv}(\operatorname{Man}_{\mathbb{C}};\operatorname{Sp}) &== \left\{ \mathcal{F} \colon \operatorname{Man}_{\mathbb{C}}^{\operatorname{op}} \to \operatorname{Sp} \middle| \forall M \in \operatorname{Man}_{\mathbb{C}}, \mathcal{F} \middle|_{\operatorname{Open}(M)} \text{ is a sheaf} \right\} \\ &\simeq \downarrow \\ \operatorname{Shv}(\mathcal{O}(C)'\mathrm{s};\operatorname{Sp}) &== \left\{ \mathcal{F} \colon \left\{ \mathcal{O}(C)'\mathrm{s} \right\} \to \operatorname{Sp} \middle| \forall C, \mathcal{F} \middle|_{\operatorname{Closed}(C)} \text{ is a } \mathcal{K}\text{-sheaf} \right\}, \end{aligned}$$

where the $\mathcal{O}(C)$'s, for $C \subseteq \mathbb{C}^d$ compact Stein, live in $\operatorname{CAlg}(D_{>0}(\mathbb{C}^{\operatorname{gas}}))$.

⁴If \mathcal{C} is compactly generated, then $X \in \mathcal{C}$ is nuclear if and only if $(\underline{\operatorname{Hom}}(K, \mathbf{1}) \otimes X)(*) \xrightarrow{\sim} \operatorname{Hom}(K, X)$ is an isomorphism for all compact K.

Example 4.3. (1) For all $p \in \mathbb{Z}$ we have $\mathbb{Z}(p)_{D}(M) = \mathrm{R}\Gamma(M; \mathbb{Z}(p)_{D})$.

- (2) K^{nuc} : we have $K^{\text{nuc}}(\mathcal{O}(C)) = K^{\text{cont}}(\text{Nuc}(\mathcal{O}(C))).$
- (3) K-theory analog (Karoubi)

$$\begin{array}{ccc} K^{\mathrm{Del}} & \longrightarrow & \mathrm{HC}^{-}(\mathcal{O}(K)/\mathbb{C}^{\mathrm{gas}}) \\ & & \downarrow & & \downarrow \\ & & & \downarrow \\ & \underline{KU} & \longrightarrow & \mathrm{HP}(\mathcal{O}(K)/\mathbb{C}^{\mathrm{gas}}), \end{array}$$

where the bottom map is induced by $ku \to \operatorname{HP}(\mathbb{C}/\mathbb{C}^{\operatorname{gas}}) = \prod_{n \in \mathbb{Z}} \mathbb{C}(2n).$

There exists a filtration on K^{Del} with associated graded pieces $\mathbb{Z}(p)_{D}[2p]$, which rationally splits:

$$K_{\mathbb{Q}}^{\mathrm{Del}} = \bigoplus_{p} \mathbb{Q}(p)_{\mathrm{D}}[2p].$$

Theorem 4.4. There exists a natural map $K^{\text{nuc}} \to K^{\text{Del}}$.

Main Conjecture 4.5 (Modified Hodge Conjecture). The map above is an isomorphism.

Theorem 4.6. In any case, K^{Del} (and all three terms in its definition) is an invariant of $\text{Nuc}(\mathcal{O}(K))$ (as a $\text{Nuc}(\mathbb{C}^{\text{gas}})$ -linear category).

We obtain proper pushforward, which rather easily implies Riemann–Roch theorems.

Definition 4.7. A sheaf $\mathcal{F} \in \text{Shv}(\text{Man}_{\mathbb{C}}; \text{Sp})$ is \mathbb{D}^0 -invariant if the pullback map

$$\mathcal{F}(M) \xrightarrow{\sim} \mathcal{F}(\mathbb{D}^0 \times M)$$

is an isomorphism for all $M \in \operatorname{Man}_{\mathbb{C}}$.

Theorem 4.8. (a) For $\mathcal{F} \in \text{Shv}(\text{Man}_{\mathbb{C}}; \text{Sp})$ the following are equivalent:

- (1) \mathcal{F} is \mathbb{D}^0 -invariant.
- (2) \mathcal{F} (viewed as a \mathcal{K} -sheaf) is [0,1]-invariant (where $[0,1] \subset \mathbb{C}$).
- (3) For all $d \geq 0$, the map $\mathcal{F}(\mathcal{O}_{\mathbb{C}^d,0}) \xrightarrow{\sim} \mathcal{F}(\mathbb{C})$ is an isomorphism.
- (b) The functor $\operatorname{Shv}_{\mathbb{D}^0}(\operatorname{Man}_{\mathbb{C}}; \operatorname{Sp}) \xrightarrow{\sim} \operatorname{Sp}, \ \mathcal{F} \mapsto \mathcal{F}(*)$ is an equivalence.
- (c) The inclusion $\operatorname{Shv}_{\mathbb{D}^0}(\operatorname{Man}_{\mathbb{C}}; \operatorname{Sp}) \subseteq \operatorname{Shv}(\operatorname{Man}_{\mathbb{C}}; \operatorname{Sp})$ has a left and a right adjoint. The right adjoint is given by $\mathcal{F} \mapsto (M \mapsto \operatorname{R}\Gamma(M; \mathcal{F}(*))).$

The left adjoint is given by $\mathcal{F} \mapsto \mathcal{F}^h \coloneqq \varinjlim_{[n] \in \Delta} \mathcal{F}(- \times \Delta^n)$, where \mathcal{F} is viewed as a \mathcal{K} -sheaf.

Example 4.9. (i) Let $M \in Man_{\mathbb{C}}$. Then

$$\mathbb{S}[h_M]^h = \mathrm{R}\Gamma(-;\mathbb{S}(\Pi_\infty M)).$$

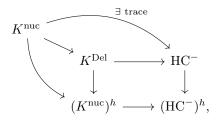
(ii) The "homotopification" of the sheafification $(\widetilde{K(\text{Vect}(-))})^h$ identifies with $\mathrm{R}\Gamma(-, ku)$. Clausen:thm

Theorem 4.10. (a) We have

$$(K^{\mathrm{nuc}})^h = \mathrm{R}\Gamma(-;KU).$$

- (b) The map $K^{\text{nuc}} \to (K^{\text{nuc}})^h$ is an isomorphism in degrees ≤ 0 (on any C).
- (c) $(\mathrm{HC}^{-})^{h} = \mathrm{HP}.$

The theorem implies the existence of a natural trace map



which uses rigidity of $Nuc(\mathbb{C}^{gas})$.

Corollary 4.11. The following are equivalent:

- (a) The modified Hodge conjecture holds.
- (b) fib($K^{\text{nuc}} \to \text{HC}^-$) is a \mathbb{D}^0 -invariant sheaf.
- (c) \dagger -rigidity: the commutative square

is a pullback.

Remark 4.12. Replace \mathbb{C}^{gas} by $\mathbb{Q}_p^{\text{solid}}$. Then \dagger -rigidity is true!

Remark 4.13 (Conjecture). $\operatorname{HH}(\mathcal{O}(C)/\mathbb{C}^{\operatorname{gas}}) = \operatorname{HH}^{\operatorname{cont}}(\operatorname{Nuc}(\mathcal{O}(C))/\mathbb{Q}).$ Again, this is true in the non-archimedean analog (due to Cordova).

Proof of Theorem 4.10. **Step 1:** For (a), use the commutative diagram

i.e., $\beta \in \pi_2(ku)$ is invertible in $(K^{\text{nuc}})^h$.

For the proof, use GAGA: If X is a smooth proper scheme over \mathbb{C} , then

$$D_{\mathrm{qc}}(X) \otimes_{D(\mathbb{C}(*))} \mathrm{Nuc}(\mathbb{C}^{\mathrm{gas}}) \xrightarrow{\sim} \mathrm{Nuc}_{\mathrm{qc}}(X^{\mathrm{an}}).$$

Apply this to $X = \mathbb{P}^1$. Then $\operatorname{Nuc}(\mathbb{P}^1) = \langle \operatorname{Nuc}(\mathbb{C}^{\operatorname{gas}}), \operatorname{Nuc}(\mathbb{C}^{\operatorname{gas}}) \rangle$, which implies

$$K^{\mathrm{nuc}}(\mathbb{P}^1 \times C) \simeq K^{\mathrm{nuc}}(C) \oplus K^{\mathrm{nuc}}(C).$$

Applying $(-)^h$, we deduce an inverse for β .

Step 2: The sheaf $\pi_0 K^{\text{nuc}}(\mathcal{O}(-))$ is [0, 1]-invariant.

Proof. The map $K(\mathcal{O}(C)(*)) \to K^{\text{nuc}}(C) = K^{\text{cont}}(\text{Nuc}(\mathcal{O}(C)))$ is an isomorphism on π_0 (and only on π_0 !). "The proof is tricky but sort of straightforward."

By Grauert–Oka, $K_0(\text{Vect}(\mathcal{O}(C)))$ is homotopy invariant.

Step 3: The sheaf $\tau_{\leq 0} K^{\text{nuc}}$ is [0, 1]-invariant. For the proof, one uses Bass delooping to compute

 $K^{\mathrm{nuc}}_{-1}(C) = \mathrm{coker} \big(K^{\mathrm{nuc}}_0(\mathbb{D}_+ \times C) \oplus K^{\mathrm{nuc}}_0(\mathbb{D}_- \times C) \to K^{\mathrm{nuc}}_0(S^1 \times C) \big)$

and then do descending induction.

Step 4: The map $K^{\text{nuc}} \to (K^{\text{nuc}})^h$ is an isomorphism on $\tau_{\leq 0}$. We have $(K^{\text{nuc}})^h = \varinjlim K^{\text{nuc}}(- \times \Delta^n)$, so the claim follows immediately from Step 3.

Step 5: We have $(K^{\text{nuc}})^h = \mathrm{R}\Gamma(-; (K^{\text{nuc}})^h(*))$, which is a *KU*-module by Step 1, hence is 2-periodic. But on the other hand, the map $K^{\text{nuc}} \to (K^{\text{nuc}})^h$ is an isomorphism on π_0 and π_{-1} .

It thus suffices to show

$$\pi_0 K^{\mathrm{nuc}}(\mathbb{C}) = \mathbb{Z},$$
$$\pi_{-1} K^{\mathrm{nuc}}(\mathbb{C}) = 0.$$