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1. Talk 1: Deligne cohomology

Deligne cohomology is a cohomology theory for complex manifolds which refines the usual
singular/sheaf cohomology H∗(M ;Z) by including some differential form data.

1.1. Motivation. Let V be a holomorphic vector bundle over a complex manifold M . Then we
get a complex topological vector bundle on the topological space M , hence a Chern class cp(V ) ∈
H2p(M ;Z).

We want refined coefficients Z(p)D which maps to Z such that cp(V ) ∈ H2p(M ;Z) functorially
(with respect to pullback of vector bundles) lifts to H2p(M ;Z(p)D).

Remark 1.1. Why do the coefficients depend on p? Note that c1(L) ∈ H2(M ;Z), where Z should
be identified with H1(C×;Z) ∼= 2πiZ ⊆ C.

Similarly, we should have cp(V ) ∈ H2p(M ; (2πi)pZ).

To define Z(p)D, let us look at first Chern classes:

c1(V ) = c1(det(V )).

One description is the following: The short exact sequence

0→ 2πiZ→ O exp−−→ O× → 1.

gives a map H1(M ;O×)→ H2(M ; 2πiZ). This suggests setting

Z(1)D = O×[−1].
1
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Reinterpretation: We have a homotopy pullback (because the cofibers on both horizontal maps
identify with O):

O×[−1] 2πiZ

[0→ Ω1 → Ω2 → · · · ] [Ω0 → Ω1 → · · · ]

∂

dlog(f)= df
f

where ΩdR := (Ω•, d) is the holomorphic de Rham complex.

Definition 1.2. For p ∈ Z, p ≥ 0, define

Z(p)D (2πi)pZ

F pΩdR = [0→ · · · → 0→ Ωp → Ωp+1 → · · · ] [Ω0 → Ω1 → · · · ] = ΩdR,

⌟

where on the left Ωp sits in homological degree −p.

Example 1.3. (i) Z(0)D = Z;
(ii) Z(1)D = O×[−1], which implies that there is a tautological Chern class c1(L) ∈ H2(M ;Z(1)D).
(iii)

⊕
p Z(p)D is a graded commutative ring, i.e., there is a map Z(p)D ⊗ Z(q)D → Z(p+ q)D.

(iv) Pullback functoriality: for each M → N there is a map H∗(N ;Z(p)D)→ H∗(M ;Z(p)D).
(v) Projective bundle formula: Let V →M be a vector bundle of dimension d and consider its

projectivization P(V )→M . Then⊕
p

RΓ(P(V );Z(p)D)

is graded free of rank d over
⊕

p RΓ(M ;Z(p)D) on 1, c1(O(1)), . . . , c1(O(1))d−1.
By Grothendieck, we can expand c1(O(1))d in terms of previous powers, and the coefficients

define the higher Chern classes cp(V ) ∈ H2p(M ;Z(p)D).

Example 1.4. If p ≤ 0, then Z(p)D = (2πi)pZ, which is “purely topological”.
If p > dimM , then Z(p)D = C/(2πi)pZ[−1].

Remark 1.5. Let M be Stein (i.e., a closed submanifold M ↪→ CN ). Then Ωi is acyclic and hence
Hp(F pΩdR) = Ωp

cl is the space of holomorphic closed p-forms (these are huge vector spaces!).

If M is compact, then dimC(
⊕

i,p H
i(M ; Ωp)) <∞ and hence the Deligne cohomlogy groups are

always built out of Z’s and C’s by extensions and quotients.
If M is compact Kähler (e.g., a smooth projective variety over C), then the map

H∗(M ;F pΩdR)→ H∗(M ; ΩdR) ≃ H∗(M ;C)

is injective. The image is F pH∗(M ;C) in the Hodge filtration. Thus, we have a short exact sequence

0→ Hi−1(M ;C)
F pHi−1(M ;C) + Hi−1(M ; (2πi)p−1Q)

→ Hi(M ;Q(p)D)→ F pHi(M ;C)∩Hi(M ; (2πi)pQ)→ 0,

which we view as an extension of something “discrete” by something “continuous”.
When i = 2p, the left hand side is Jp(M)Q, that is, Griffith’s intermediate Jacobian; for p = 1

this is the usual Jacobian.
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1.2. Applications.

(i) One application, the intermediate Jacobians Jp(M), were already mentioned.
(ii) Secondary characteristic classes of flat bundles

cp(V ) H2p−1(BGLn(C)δ,C/(2πi)pZ), p > 0

H2p(BGLn(C)δ, (2πi)pZ),

∈

∂

also called the Chern–Simons invariants.
(iii) Arithmetic: Let X → Spec(Z) be a regular proper scheme over Z. Then X should not be

thought of as compact, because Spec(Z) is not compact (Spec(Z) corresponds to the affine
line Spec(Fp[T ]) = A1

Fp
.

There is a small neighborhood around ∞ ∈ P1
Fp

corresponding to Fp[T ] → Fp((T
−1))

(which which should be thought of as corresponding to the inclusion {0} → R).
On X , we should consider not just cohomology, but “compactly supported cohomology”,

namely

fib
(
RΓ(X )→ RΓ(X (C)/C2)

)
.

The idea of Arakelov theory is the following: If “cohomology” means motivic cohomology,
then RΓ(X (C)) should be Deligne cohomology.

Example 1.6. Consider the motivic cohomology

Hi
M(Spec(Z);Q(p))→ Hi(∗C;Q(p)D)

C2 .

In weights p > 1, (by Borel) the left hand side is non-zero if and only if i = 1 and p is odd, in which
case it is a one-dimensional Q-vector space. The right hand side is non-zero if and only if i = 1 and
p is odd, in which case it is isomorphic to C/(2πi)pQ Re−−→ R. The image of the induced map Q→ R
can be identified with π?ζ(p)Q, where ζ is the Riemann ζ-function.

1.3. Goals of this lecture series.

(a) We want to make precise the idea that Deligne cohomology is the analog of motivic cohomology
for complex manifolds.

(b) A second goal is to understand the Hodge conjecture: For a complex smooth projective
manifold M we have:

K0(Vect(M))Q
⊕

p H
2p(M ;Q(p))

⊕
p Hdgp(M)Q.

ch

We want to modify K0(Vect(M)) using continuous K-theory to get a theory where it is
reasonable to conjecture that K0(Nuc(M))Q

∼−→
⊕

p H
2p(M ;Q(p)).

(c) A third goal is to make Riemann–Roch more transparent.
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2. Talk 2: Complex manifolds from a new perspective (joint with P. Scholze)

Let M be a complex manifold. The Deligne cohomology of M was defined as a complex Z(p)D of
sheaves, for any p ∈ Z, given by the pullback

Z(p)D (2πi)pZ

F pΩdR ΩdR.

⌟

Main goal: “Fix” the fact that

K0(Vect(M))→
⊕
p

H2p(M ;Z(p)D)

is far from being an isomorphism by replacing K(Vect(M)) with Kcont(Nuc(M)). Here, Nuc(M) is
some version of Dqc(M).

Idea: make it more like scheme theory: Start with a class of rings, R, which will determine
everything: there is

• an underlying topological space,
• a structure sheaf of holomorphic functions,
• a de Rham complex,
• . . . .

The basic example of an R will be

Ohol(D) =

{∑
n

cnT
n

∣∣∣∣∣ ∃r > 1 such that
∑
n

|cn|rn →∞

}
,

where D ⊆ C is the closed unit disk and Ohol denotes the functions which are holomorphic in a
neighborhood of D.

Good news! The abstract algebra Ohol(D) determines D. More precisely, there are mutually
inverse maps

D HomC(Ohol(D),C)

x7→evx

φ(T )← [φ

Proof. We need:

(i) φ(T ) ∈ D. Suppose λ ∈ C ∖ D. Then 1
T−λ ∈ O

hol(D), that is, T − λ is a unit, hence so is
φ(T − λ) = φ(T )− φ(λ) ̸= 0, which is a contradiction.

(ii) φ is determined by φ(T ). This follows from the claim that

lim
N→∞

φ
(∑
n≤N

cnT
n
)
= φ

(∑
n

cnT
n
)
.

The same argument as above shows that φ(
∑

n>N cnT
n) ∈ εD for N such that

∑
n>N |cn| < ε.

□
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Definition 2.1. Let R be a C-algebra. Define

MB(R) = HomC(R,C) ⊆
∏
f∈R

C

with the product topology.1

Claim. Both maps above are continuous.

The proof of the claim is (more or less) obvious. We now have that

D =MB(Ohol(D)).

Bad news: We cannot get a structure sheaf, deRham cohomology etc. just from the abstract
C-algebra structure on Ohol(D). The most basic reason is that

Ohol(D)⊗C Ohol(D) ̸= Ohol(D2),

where ⊗C is the abstract tensor product.
Solution: remember the topological vector space structure on Ohol(D) and use the completed

tensor product ⊗C. Or rather, use a category-friendly version thereof.
Concretely, this means that “topological” vector spaces are replaced with “light condensed” C-vector

spaces; then completeness corresponds to “gaseous”.

Definition 2.2. A light condensed abelian group is a presheaf of abelian groups on Pro(Fin)light,
the category of countable inverse limits of finite sets, satisfying descent with respect to (1) finite
coproducts and (2) surjections S→→ T .

Exercise: We have that N ∪ {∞} lies in Pro(Fin)light.

Example 2.3. For C, there is a light condensed ring given by S 7→ C0(S,C), where C0(S,C) denotes
set of continuous functions from S to C.

We can now consider the symmetric monoidal category(
ModC(CondAblight),⊗C).

We need to pass to a full subcategory of “complete” objects.
Idea: Completeness of M corresponds to the following property: if m0,m1,m2, . . . is a null

sequence in M , then we can form
∑

n mn · (1/2)n ∈M .
Here, a null sequence is a map from Z[N ∪ {∞}]/Z∞, the free condensed abelian group on a null

sequence.

Definition 2.4. A module M ∈ ModC(CondAblight) is called gaseous if the map

Null(M) := Hom(Z[N ∪ {∞}]/Z∞,M)
1−T · 12−−−−→
≃

Hom(Z[N ∪ {∞}]/Z∞,M),

where T is induced by the shift map N→ N, n 7→ n+ 1.

Remark 2.5. The condition for 1
2 is equivalent to the condition for any λ with 0 < |λ| < 1.

Theorem 2.6. The full subcategory ModCgas ⊆ ModC(CondAblight) of gaseous C-vector spaces is
abelian, closed under all colimits, limits, extensions, all Ri lim←−, Li lim−→ and Ri Hom(X,−), for all
X ∈ ModC(CondAblight).

1The subscript “B” stands for Betti or Berkovich.
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Proof. Everything follows from the (interesting) fact that Z[N ∪ {∞}]/Z∞ is (internally) projective
in ModC(CondAblight). □

Upshot:
(i) There exists a left adjoint

(−)gas : ModC(CondAblight)→ ModCgas

to the inclusion,
(ii) There exists a symmetric monoidal structure on ModCgas making (−)gas symmetric monoidal.
(iii) There is a derived analog of everything.

Example 2.7. Any Banach space over C is gaseous. In particular, Ohol(D) is gaseous (it is a filtered
union of ℓ1-spaces).

Theorem 2.8. The ring Ohol(D) is flat with respect to −⊗Cgas − and

Ohol(D)⊗Cgas M = lim−→Null(M).

Proof. Use trace class map tricks. □

The rings R that we consider are objects of CAlg(D≥0(Cgas)), which we call gaseous C-algebras.

Definition 2.9. Let R be a gaseous C-algebra.
(a) An element f ∈ π0R(∗) is called topologically nilpotent if there is a factorization

C[T ] R

C[N ∪ {∞}/∞]

T 7→f

∃

of condensed rings.
(b) R is called pointwise bounded if for all f ∈ R (meaning: f ∈ π0R(∗)), there exists λ ∈ C

with 0 < |λ| < 1 such that λf is topologically nilpotent.

Definition 2.10 (Rodriguez-Camargo). Let S ∈ Pro(Fin)light. Then f ∈ R(S) is uniformly
topologically nilpotent if there exists a factorization

C
[⊔

d Sym
d S

]
R

C
[(⊔

d Sym
d S

)
∪ {∞}/∞

]
.

f

∃

R is called bounded if for all S and all f ∈ R(S), there exists λ ∈ C with 0 < |λ| < 1 such that
λf is uniformly topologically nilpotent.

Theorem 2.11 (Rodriguez-Camargo). CAlg(D≥0(Cgas))bded ⊆ CAlg(D≥0(Cgas)) is closed under
all colimits and finite limits.

Example 2.12. Any Banach algebra R over C is bounded. In particular, Ohol(D) is bounded.

Theorem 2.13. If R is pointwise bounded, then MB(R(∗)) is compact Hausdorff and

D(R) := ModR(D(Cgas))

localizes along MB(R(∗)) (the abstract C-algebra underlying MB(R)).
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3. Talk 3: Quasicoherent sheaves in complex geometry (joint with P. Scholze)

Recall, we considered R ∈ CAlg(D≥0(Cgas))bded, meaning that for all f ∈ R there exists λ ∈ C×
such that λf is topologically nilpotent and similarly for f ∈ R(S) with S ∈ Pro(Fin)light.2

Clausen:Gelfand
Theorem 3.1. The category D(R) := ModR(D(Cgas)) localizes on the compact Hausdorff space
MB(R(∗)) = HomC(R(∗),C), called the Gelfand spectrum.

Note that under the boundedness condition we even have a closed embedding

MB(R(∗)) ⊆
∏

f∈R(∗)

C|·|≤Cf
,

where Cf ∈ R>0 depends on f .

Example 3.2. If R = Ohol(Dn), then MB(R(∗)) = Dn.

Definition 3.3 (Balmer–Krause–Stevenson). Let C ∈ CAlg(PrL). Define a full subcategory

Idem(C) ⊆ CAlg(C)

consisting of the idempotent algebras, i.e., algebras R such that 1 → R induces an isomorphism
R = 1⊗R

∼−→R⊗R (equivalently, m : R⊗R
∼−→R is an isomorphism).

Proposition 3.4. The category Idem(C) is a poset.3

Moreover, Idem(C) has arbitrary colimits and finite limits, which are calculated as follows:
(1) sifted colimits are calculated in C.
(2) finite coproducts are calculated by ⊗.
(3) pullbacks are computed as the fiber product

(pullback) R

S S ⊗R.

⌟

Moreover, Idem(C) is a locale (i.e., it satisfies the same properties as open subsets of a topological
space).

A more precise version of Theorem 3.1 is the following:

Theorem 3.5. There exists a map of posets (localesop?)

Closed(MB(R))→ Idem(D(R))op

preserving finite colimits and limits.

The map is uniquely determined by the following: For all f ∈ R and C ∈ R>0 it is given by

{|f | ≤ C} 7→ R⊗Cgas O(C · D)/(T − f),

{|f | ≥ C} 7→ R⊗Cgas O
(
{|M | ≥ C} merom. at ∞

)
/(T − f).

Explicitly, for any closed subset K ⊂MB(R) we get an idempotent R-algebra O(K).

2An analogous definition was considered by Ralf Meyer.
3This means that the anima of maps is either empty or contractible.
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Example 3.6. Let R = O(Dn). Then

O(K) = lim−→
U⊇K
open

RΓ(U ;Ohol).

Remark 3.7. In general, O(K) can live in positive and negative degrees. In practice it lives in
degrees ≤ 0.

Moreover, in general, {K | O(K) ∈ D≥0(Cgas)} is closed under intersections and generates the
topology. For any such K, we have O(K) ∈ CAlg(D≥0(Cgas))bded and

MB(O(K)) MB(R)

K,

≃

and for K ′ ⊆ K the idempotent algebras agree. (This is analogous to distinguished opens in algebraic
geometry.)

Example 3.8. If R = O(Dn), then K ⊆ Dn satisfies O(K) ∈ D≥0(Cgas) if and only if K is
holomorphic (?) convex (compact Stein).

Recall (Lurie), if X is locally compact Hausdorff and C ∈ PrLst, then

Shv(X; C) ≃←→ ShvK(X; C),

where the right hand side is the category of presheaves on compact subsets such that (1) it satisfies
the sheaf condition for finite covers and (2) F(K) = lim−→K⋐K′ F(K ′).

For X =MB(R) one has the same if one only restricts to K such that O(K) ∈ D≥0(Cgas).

Corollary 3.9. (a) We get a structure sheaf O ∈ Shv(MB(R); CAlg(D(Cgas))). (For R = O(D)
we get the usual Ohol.)

(b) We get a sheaf with values in CAlg(PrL), given by K 7→ D(O(K)); this uses idempotency.

Theorem 3.10 (Automatic quasicoherence). The functor

D(R)→ ModO(Shv(MB(R);D(Cgas))),

M 7→
(
K 7→M ⊗R O(K)

)
is an equivalence.

Proof. Fully faithfulness is easy. For essential surjectivity it is enough to hit the generators “hU ”,
where U ⊆MB(R) is open. These are hit by fib(R→ O(X ∖ U)). □

We thus get a category Dqcoh(M) for any complex manifold M .

Theorem 3.11. Let R be bounded. Then we can define a (derived deRham) complex on MB(R),
which is also a sheaf.

Example 3.12. If R = O(Dn), then we get back the usual deRham complex.
The key input is that C[T1, . . . , Tn] ↪→O(Dn) is idempotent.

Note that this also allows us to define Deligne cohomology.

Warning 3.13. The category D(Cgas) is not rigid.
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The fix is to pass to a full subcategory which is rigid. Recall that, if C ∈ CAlg(PrL) is such that
1 is compact, then C is rigid if and only if C is generated by basic nuclear objects (which is the same
as ω1-compact objects), i.e., objects of the form lim−→(x0 → x1 → · · · ), where all transition maps
xn → xn+1 are trace class.4 This is not satisfied for C = D(Cgas). For example, P = Cgas(N∪{∞}/∞)
is compact in D(Cgas). But it is not basic nuclear, because id : P → P is not trace class.

In fact, we have P ⊆
∏

N C consisting of those sequences with “quasi-exponential decay”. The
trace class maps in D(Cgas) are generated by maps P → P which are given by a diagonal matrix
with quasi-exponential decay.

Definition 3.14. Let C ∈ CAlg(PrL) and assume that 1 is compact. Let

Nuc(C) ⊆ C
be the full subcategory generated by the basic nuclear objects.

Fact 3.15. Nuc(C) is closed under ⊗, and we have 1 ∈ Nuc(C).

Question 3.16. Is Nuc(C) always rigid?

In general, the answer is no! But the answer is yes if every trace class map factors as the composite
of two trace class maps. This holds for D(Cgas), i.e., Nuc(Cgas) is rigid.

Theorem 3.17. (a) Nuc(Cgas) = Nuc(⟨P ⟩).
(b) Let R ∈ CAlg(D(Cgas)) such that R ∈ Nuc(Cgas), then

Nuc(ModR(D(Cgas))) = ModR(Nuc(Cgas)).

(c) Ohol(Dn) ∈ Nuc(Cgas).
(d) Nuc(Cgas) ⊆ D(Cgas) is closed under countable limits.

Hence, for a complex manifold M , we can define

Dqcoh(M) ⊇ Nuc(M)

such that F is nuclear if and only if F(K) is a nuclearO(K)-module for all compact K or, equivalently,
F(K) is nuclear over Cgas.

4. Talk 4: Cohomology theories on complex manifolds (joint with P. Scholze)

Theorem 4.1. If R ̸= 0 is pointwise bounded, then there exists a C-algebra morphism R(∗)→ C.

Proof. If there were no such algebra morphism, then R = O(MB(R)) = O(∅) = 0.
Challenge: Give a direct proof. □

Definition 4.2. We put

Shv(ManC; Sp)
{
F : ManopC → Sp

∣∣∣∀M ∈ ManC,F
∣∣
Open(M)

is a sheaf
}

Shv(O(C)’s; Sp)
{
F : {O(C)’s} → Sp

∣∣∣ ∀C,F∣∣
Closed(C)

is a K-sheaf
}
,

≃

where the O(C)’s, for C ⊆ Cd compact Stein, live in CAlg(D≥0(Cgas)).

4If C is compactly generated, then X ∈ C is nuclear if and only if (Hom(K,1) ⊗ X)(∗) ∼−→ Hom(K,X) is an
isomorphism for all compact K.
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Example 4.3. (1) For all p ∈ Z we have Z(p)D(M) = RΓ(M ;Z(p)D).
(2) Knuc: we have Knuc(O(C)) = Kcont(Nuc(O(C))).
(3) K-theory analog (Karoubi)

KDel HC−(O(K)/Cgas)

KU HP(O(K)/Cgas),

⌟

where the bottom map is induced by ku→ HP(C/Cgas) =
∏

n∈Z C(2n).
There exists a filtration on KDel with associated graded pieces Z(p)D[2p], which rationally

splits:
KDel

Q =
⊕
p

Q(p)D[2p].

Theorem 4.4. There exists a natural map Knuc → KDel.

Main Conjecture 4.5 (Modified Hodge Conjecture). The map above is an isomorphism.

Theorem 4.6. In any case, KDel (and all three terms in its definition) is an invariant of Nuc(O(K))
(as a Nuc(Cgas)-linear category).

We obtain proper pushforward, which rather easily implies Riemann–Roch theorems.

Definition 4.7. A sheaf F ∈ Shv(ManC; Sp) is D0-invariant if the pullback map

F(M)
∼−→F(D0 ×M)

is an isomorphism for all M ∈ ManC.

Theorem 4.8. (a) For F ∈ Shv(ManC; Sp) the following are equivalent:
(1) F is D0-invariant.
(2) F (viewed as a K-sheaf) is [0, 1]-invariant (where [0, 1] ⊂ C).
(3) For all d ≥ 0, the map F(OCd,0)

∼−→F(C) is an isomorphism.
(b) The functor ShvD0(ManC; Sp)

∼−→ Sp, F 7→ F(∗) is an equivalence.
(c) The inclusion ShvD0(ManC; Sp) ⊆ Shv(ManC; Sp) has a left and a right adjoint.

The right adjoint is given by F 7→ (M 7→ RΓ(M ;F(∗))).
The left adjoint is given by F 7→ Fh := lim−→[n]∈∆ F(− × ∆n), where F is viewed as a

K-sheaf.

Example 4.9. (i) Let M ∈ ManC. Then

S[hM ]h = RΓ(−;S(Π∞M)).

(ii) The “homotopification” of the sheafification
( ˜K(Vect(−))

)h identifies with RΓ(−, ku).
Clausen:thm

Theorem 4.10. (a) We have

(Knuc)h = RΓ(−;KU).

(b) The map Knuc → (Knuc)h is an isomorphism in degrees ≤ 0 (on any C).
(c) (HC−)h = HP.
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The theorem implies the existence of a natural trace map

Knuc

KDel HC−

(Knuc)h (HC−)h,

∃ trace

which uses rigidity of Nuc(Cgas).

Corollary 4.11. The following are equivalent:
(a) The modified Hodge conjecture holds.
(b) fib(Knuc → HC−) is a D0-invariant sheaf.
(c) †-rigidity: the commutative square

Knuc(OC†,0) TC−(OCd,0/Cgas)

Knuc(C) TC−(C/C)

⌟

is a pullback.

Remark 4.12. Replace Cgas by Qsolid
p . Then †-rigidity is true!

Remark 4.13 (Conjecture). HH(O(C)/Cgas) = HHcont(Nuc(O(C))/Q).
Again, this is true in the non-archimedean analog (due to Cordova).

Proof of Theorem 4.10. Step 1: For (a), use the commutative diagram

ku (Kvect)h (Knuc)h

KU,
∃

i.e., β ∈ π2(ku) is invertible in (Knuc)h.
For the proof, use GAGA: If X is a smooth proper scheme over C, then

Dqc(X)⊗D(C(∗)) Nuc(Cgas)
∼−→Nucqc(X

an).

Apply this to X = P1. Then Nuc(P1) = ⟨Nuc(Cgas),Nuc(Cgas)⟩, which implies

Knuc(P1 × C) ≃ Knuc(C)⊕Knuc(C).

Applying (−)h, we deduce an inverse for β.

Step 2: The sheaf π0K
nuc(O(−)) is [0, 1]-invariant.

Proof. The map K(O(C)(∗))→ Knuc(C) = Kcont(Nuc(O(C))) is an isomorphism on π0 (and only
on π0!). “The proof is tricky but sort of straightforward.”

By Grauert–Oka, K0(Vect(O(C))) is homotopy invariant. □
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Step 3: The sheaf τ≤0Knuc is [0, 1]-invariant.
For the proof, one uses Bass delooping to compute

Knuc
−1 (C) = coker

(
Knuc

0 (D+ × C)⊕Knuc
0 (D− × C)→ Knuc

0 (S1 × C)
)

and then do descending induction.

Step 4: The map Knuc → (Knuc)h is an isomorphism on τ≤0.
We have (Knuc)h = lim−→Knuc(−×∆n), so the claim follows immediately from Step 3.

Step 5: We have (Knuc)h = RΓ(−; (Knuc)h(∗)), which is a KU -module by Step 1, hence is
2-periodic. But on the other hand, the map Knuc → (Knuc)h is an isomorphism on π0 and π−1.

It thus suffices to show

π0K
nuc(C) = Z,

π−1K
nuc(C) = 0.

□
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