DUALIZABLE CATEGORIES AND LOCALIZING MOTIVES

ALEXANDER EFIMOV

Contents

1.	Talk 1	1
1.1	. Compactly assembled categories	1
2.	Talk 2	5
3.	Talk 3: Localizing invariants of categories of sheaves	8
4.	Talk 4	11
4.1	. The internal Hom in Cat ^{dual}	13
5.	Talk 5: Internal homs and inverse limits in Cat ^{dual}	14
6.	Talk 6: Rigidity of Mot ^{loc}	17

1. Talk 1

Consider a qcqs scheme X. There are two categories associated with X: the category $\operatorname{Perf}(X) = D_{\operatorname{qc}}(X)^{\omega}$ of perfect complexes and $D_{\operatorname{qc}}(X) = \operatorname{Ind}(\operatorname{Perf}(X))$.

There are two invariants we might consider:

$$\begin{split} K(X) &= K(\operatorname{Perf}(X)) \\ \operatorname{HH}(X) &= \operatorname{HH}(\operatorname{Perf}(X)), \\ K(D_{\operatorname{qc}}(X)) &= 0. \end{split}$$

The idea is to understand K(X) in terms of $D_{qc}(X)$.

1.1. **Compactly assembled categories.** Compactly assembled categories were first developed by Lurie, Joyal, Johnstone etc.

Lurie, Joyal, Jonnstone etc. If $\mathcal{C} = \text{Ind}(\mathcal{A})$, then for all $x \in \mathcal{C}$ we have an ind-system $(x_i)_i$ with $x_i \in \mathcal{C}^{\omega}$ such that $x = \varinjlim_i x_i$.

Observe that the assignment $x \mapsto \lim_{i \to \infty} x_i$ is gives a well-defined functor

$$\widehat{Y}: \mathcal{C} \to \mathrm{Ind}(\mathcal{C}),$$

which is left adjoint to colim: $\operatorname{Ind}(\mathcal{C}) \to \mathcal{C}$.

Definition 1.1. Let \mathcal{C} be an accessible ∞ -category with filtered colimits. Then \mathcal{C} is *compactly* assembled if there exists $\widehat{Y} : \mathcal{C} \to \text{Ind}(\mathcal{C})$ which is left adjoint to colim.

Example 1.2. (1) $Ind(\mathcal{A})$ is compactly assembled.

(2) $(\mathbb{R} \cup \{+\infty\}, \leq)$ is compactly assembled with $\widehat{Y}(a) = \lim_{b \leq a} b$.

- (3) Let X be a locally compact Hausdorff space. Then Open(X) is compactly assembled with $\widehat{Y}(U) = \lim_{U \in U} \mathbb{V}$. Also, $\mathcal{K}(X)^{\text{op}}$ is compactly assembled with $\widehat{Y}(Z) = \lim_{U \in U} \mathbb{V}_{Z' \supset Z} Z'$.
- (4) **Exercise:** Let Seminorm₁ be the category of \mathbb{R} -vector spaces with a seminorm $\|\cdot\|$ and contractible maps (i.e., $||f(x)|| \le ||x||$). If dim $V < \infty$ and $(V, ||\cdot||)$ is normed, then

$$Y(V, \|\cdot\|) = \lim_{c>1} V(V, c\|\cdot\|)$$

- and $\widehat{Y}(\mathbb{R},0) = \underset{\varepsilon>0}{``\lim}(\mathbb{R},\varepsilon|\cdot|).$ (5) Shv $(X,\underline{\mathcal{C}})$ is compactly assembled, where X is a locally compact Hausdorff space and $\underline{\mathcal{C}}$ is a presheaf of dualizable categories.
- (6) The categories $\operatorname{Nuc}(R_{\widehat{\tau}})$ and $\operatorname{Nuc}(R_{\widehat{\tau}})$ of nuclear modules are compactly assembled, and $\operatorname{Nuc}(R_{\widehat{I}})^{\omega} = \operatorname{Perf}(R_{\widehat{I}}).$
- (7) Let R be an associative ring and $J \subseteq R$ an ideal which is flat as a right module and satisfying $J^2 = J$. Put

$$\operatorname{Mod}_{a}(R) = \operatorname{Mod}(R) / \operatorname{Mod}(R/J)$$

Then $D(Mod_a(R))$ is compactly assembled.

We introduce the following notation:

- Cat^{idem} is the category of small idempotent complete categories,
- Cat^{perf} is the category of small idempotent complete stable categories, and
- CompAss is the category of compactly assembled categories, where the 1-morphisms are the strongly continuous functors, i.e., $F: \mathcal{C} \to \mathcal{D}$ such that F commutes with filtered colimits and the diagram

$$\begin{array}{ccc} \mathcal{C} & & \xrightarrow{F} & \mathcal{D} \\ \widehat{Y} \downarrow & & & \downarrow \widehat{Y} \\ \operatorname{Ind}(\mathcal{C}) & & & \operatorname{Ind}(\mathcal{D}). \end{array}$$

• Denote $\operatorname{Cat}_{\operatorname{st}}^{\operatorname{dual}} \subseteq \operatorname{CompAss}$ the subcaetgory of compactly assembled stable categories with strongly continuous exact functors. Note that both $\operatorname{Cat}_{\operatorname{st}}^{\operatorname{dual}}$ and CompAss are cocomplete.

(1) Cat^{idem} is generated under colimits by [1], which is compact. Proposition 1.3 (Lurie). (2) $\operatorname{Cat}^{\operatorname{perf}}$ is generated under colimits by $\operatorname{Sp}^{\omega}$, which is compact.

Sketch. Let $F: \mathcal{C} \to \mathcal{D}$ such that $\operatorname{Fun}([1], \mathcal{C}) \xrightarrow{\sim} \operatorname{Fun}([1], \mathcal{D})$. Then F is an equivalence.

Efimov:Urysohn

- Theorem 1.4 (Urysohn's lemma). (1) CompAss is generated under colimits by $\mathbb{R} \cup \{\infty\}$, which is ω_1 -compact.
 - (2) Cat^{dual} is generated under colimits by $\operatorname{Shv}_{\mathbb{R}\times\mathbb{R}_{\geq 0}}(\mathbb{R};\operatorname{Sp})$.

In particular, CompAss and Cat^{dual} are ω_1 -presentable.¹

Remark 1.5. The usual Urysohn's lemma for compact Hausdorff spaces says that CompHaus^{op} is generated under colimits by [0, 1], which is ω_1 -compact.

 $\mathbf{2}$

¹The last statement ist due to Ramzi.

Fact 1.6. We have an equivalence CompAss $\xrightarrow{\sim}$ Cat^{dual}, where Cat^{dual} is the category of dualizable objects in Pr^{L} whose 1-morphisms are those functors $F: \mathcal{C} \to \mathcal{D}$ for which the right adjoint F^{R} is colimit-preserving. The equivalence takes

$$\operatorname{Ind}(\mathcal{A}) \leftrightarrow \operatorname{PSh}(\mathcal{A}; \operatorname{Ani}),$$
$$\mathcal{C} \mapsto \left\{ F \colon \mathcal{C}^{\operatorname{op}} \to \operatorname{Ani} \middle| \begin{array}{c} F \text{ commutes with} \\ \operatorname{cofiltered limits} \end{array} \right\},$$
$$\left\{ G \colon \mathcal{D}^{\vee} \to \operatorname{Ani} \middle| \begin{array}{c} G \text{ is colimit preserving} \\ \operatorname{and left exact} \end{array} \right\} \leftarrow \mathcal{D}.$$

Why is CompAss generated by $\mathbb{R} \cup \{\infty\}$? It suffices to show that if $F: \mathcal{C} \to \mathcal{D}$ is strongly continuous such that

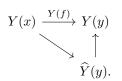
$$\operatorname{Fun}^{\operatorname{str.cont.}}(\mathbb{R} \cup \{\infty\}, \mathcal{C})^{\simeq} \xrightarrow{\sim} \operatorname{Fun}^{\operatorname{str.cont.}}(\mathbb{R} \cup \{\infty\}, \mathcal{D})^{\simeq},$$

then F is an equivalence.

Proposition 1.7. Any compactly assembled category is ω_1 -accessible.

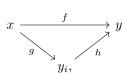
Sketch. We have $\widehat{Y}(x) = \underset{i \in I}{```} \underset{i \in I}{```} x_i$, where I is a directed poset. Then $x \simeq \underset{f: \mathbb{N} \to I}{```} \underset{n}{```} \underset{n}{```} x_{f(n)}$, where $x_{f(n)}$ is ω_1 -compact.

Definition 1.8. In a compactly assembled category, a map $f: x \to y$ is compact if it factors as



Lemma 1.9. If C is compactly assembled, and $f: x \to y$ in C is compact, then $f = g \circ h$ such that g, h are compact.

Sketch. Write $\widehat{Y}(y) = \lim_{i \to \infty} \lim_{i \to \infty} u_i y_i$. Then $\widehat{Y}(y) = \lim_{i \to \infty} \widehat{Y}(y_i)$, so we have a factorization



where g and h are compact.

Lemma 1.10. The functor

Fun^{str.cont.} $(\mathbb{R} \cup \{\infty\}, \mathcal{C}) \to \mathcal{C}^{\omega_1},$ $G \mapsto G(\infty)$

is essentially surjective.

Proof. Let $x \in \mathcal{C}^{\omega_1}$. Then $\widehat{Y}(x) = \lim_{n \to \infty} (x_0 \to x_1 \to \cdots)$ such that each $x_n \to x_{n+1}$ is compact. Define $G_0: \mathbb{Z} \cup \{\infty\} \to \mathcal{C}$ by

$$G(m) = \begin{cases} x, & \text{if } h = \infty, \\ x_m, & \text{if } m \ge 0, \\ 0, & \text{if } m < 0. \end{cases}$$

Inductively, define compatible $G_n \colon \frac{1}{2^n} \mathbb{Z} \cup \{\infty\} \to \mathcal{C}$ such that all transition maps are compact. We obtain $G: \mathbb{Z}[1/2] \cup \{\infty\} \to \mathcal{C}$ and put

$$G' : \mathbb{Z}[1/2] \cup \{\infty\} \to \mathcal{C}, \qquad G'(r) = \varinjlim_{b < r} G(b).$$

Take a left Kan extension of G' to $\mathbb{R} \cup \{\infty\}$ to get a strongly continuous functor $H: \mathbb{R} \cup \{\infty\} \to \mathcal{C}$ such that $H(\infty) = x$.

For F as above, we already know that $F^{\omega_1} : \mathcal{C}^{\omega_1} \to \mathcal{D}^{\omega_1}$ is essentially surjective. In order to finish the proof of Theorem 1.4.(1), we need to show that it is fully faithful. Consider the pullback diagram

$$\lim_{a > 0} \operatorname{Map}_{\mathcal{C}}(G(0), H(a)) \longrightarrow \operatorname{Fun}^{\operatorname{str.cont.}}(\mathbb{R} \cup \{\infty\}, \mathcal{C})^{\simeq} \\
\downarrow \\
\ast \xrightarrow[(G,H)]{} \operatorname{Fun}^{\operatorname{str.cont.}}(\mathbb{R}_{\leq 0}, \mathcal{C})^{\simeq} \times \operatorname{Fun}^{\operatorname{str.cont.}}(\mathbb{R}_{> 0} \cup \{\infty\}, \mathcal{C})^{\simeq}.$$

It follows that $\varprojlim_{a>0} \operatorname{Map}_{\mathcal{C}}(G(0), H(a)) \xrightarrow{\sim} \varprojlim_{a>0} \operatorname{Map}_{\mathcal{D}}(F(G(0)), F(H(a))).$ Given strongly continuous functors $G, H \colon \mathbb{R} \cup \{\infty\} \to \mathcal{C}$, we get

$$\operatorname{Map}_{\mathcal{C}}(G(\infty), H(\infty)) = \varprojlim_{a < \infty} \varinjlim_{b < \infty} \operatorname{Map}_{\mathcal{C}}(G(a), H(b))$$
$$= \varprojlim_{a < \infty} \varinjlim_{b < \infty} \varinjlim_{c > b} \operatorname{Map}_{\mathcal{C}}(G(a), H(c))$$
$$\xrightarrow{\sim} \varprojlim_{a < \infty} \varinjlim_{b < \infty} \varprojlim_{c > b} \operatorname{Map}_{\mathcal{D}}(F(G(a)), F(H(c)))$$
$$\xrightarrow{\sim} \cdots \xrightarrow{\sim} \operatorname{Map}_{\mathcal{D}}(F(G(\infty)), F(H(\infty))).$$

Hence, F^{ω_1} is fully faithful.

The functor ι : Cat^{dual}_{st} \rightarrow CompAss is conservative and commutes with filtered colimits. It has a left adjoint

> $\mathrm{Stab}^{\mathrm{cont}}\colon \mathrm{CompAss}\to \mathrm{Cat}_{\mathrm{st}}^{\mathrm{dual}},$ $\mathcal{C} \mapsto \{F \colon \mathcal{C}^{\mathrm{op}} \to \operatorname{Sp} \mid F \text{ commutes with filtered colmilits} \}.$

It follows that $\operatorname{Stab}^{\operatorname{cont}}(\mathbb{R} \cup \{\infty\}) = \operatorname{Shv}_{\mathbb{R} \times \mathbb{R}_{>0}}(\mathbb{R}, \operatorname{Sp})$ generates $\operatorname{Cat}_{\operatorname{st}}^{\operatorname{dual}}$

Proposition 1.11. For a sheaf $\mathcal{F} \in \text{Shv}(\mathbb{R}, \text{Sp})$, the following are equivalent:

- (1) The singular support (microsupport) $SS(\mathcal{F})$ is a subset of $\mathbb{R} \times \mathbb{R}_{\geq 0}$.
- (2) For all a < b, $\mathcal{F}((-\infty, b)) \xrightarrow{\sim} \mathcal{F}((a, b))$.

Corollary 1.12. We have equivalences

$$\operatorname{Shv}_{\mathbb{R}\times\mathbb{R}_{\geq 0}}(\mathbb{R},\operatorname{Sp}) \simeq \left\{ F \colon (\mathbb{R}_{\leq})^{\operatorname{op}} \to \operatorname{Sp} \middle| \forall a \in \mathbb{R}, F(a) \xrightarrow{\sim} \varprojlim_{b < a} F(b) \right\}$$
$$\simeq \operatorname{Stab}^{\operatorname{cont}}(\mathbb{R} \cup \{\infty\}).$$

2. Talk 2

Definition 2.1. Let \mathcal{C} be a presentable stable category. Then \mathcal{C} is called *flat* if $\mathcal{C} \otimes -: \operatorname{Pr}_{\mathrm{st}}^{L} \to \operatorname{Pr}_{\mathrm{st}}^{L}$ preserves fully faithful functors.

Question: Is every $C \in \Pr_{st}^{L}$ flat?

Theorem 2.2. C is flat if and only if C is dualizable.

Proof. If C is dualizable, then C is obviously flat, since $C \otimes - = \operatorname{Fun}^{L}(C^{\vee}, -)$. The other direction will be proved below.

Notation. Let Pr_{st}^{acc} be the $(\infty, 2)$ -category of presentable stable categories and accessible exact functors.

- **Proposition 2.3.** (a) For any $C \in \operatorname{Pr}_{\mathrm{st}}^{L}$, there exists a natural oplax 2-functor $C \otimes -: \operatorname{Pr}_{\mathrm{st}}^{\mathrm{acc}} \to \operatorname{Pr}_{\mathrm{st}}^{\mathrm{acc}}$ (meaning that there are 2-morphisms $C \otimes (F \circ G) \to (C \otimes F) \circ (C \otimes G)$ which need not be invertible) which extends the usual 2-functor $C \otimes -: \operatorname{Pr}_{\mathrm{st}}^{L} \to \operatorname{Pr}_{\mathrm{st}}^{L}$. (b) If C is flat, then $C \otimes -$ is an honest 2-functor.
 - $(0) ij \in is juit, include \otimes is all holicist is julleton.$

Assume that \mathcal{C} is κ -presentable and $F: \mathcal{D} \to \mathcal{E}$ is an accessible functor. Then

$$\mathcal{C} \otimes F \colon \mathcal{C} \otimes \mathcal{D} \simeq \operatorname{Fun}^{\kappa \operatorname{-lex}}((\mathcal{C}^{\kappa})^{\operatorname{op}}, \mathcal{D}) \xrightarrow{F^{\circ} \to} \operatorname{Fun}((\mathcal{C}^{\kappa})^{\operatorname{op}}, \mathcal{E}) \to \operatorname{Fun}^{\kappa \operatorname{-lex}}((\mathcal{C}^{\kappa})^{\operatorname{op}}, \mathcal{E}) \cong \mathcal{C} \otimes \mathcal{E},$$

where the second map is given by the left adjoint to the inclusion.

Observation: For presentable stable \mathcal{D}, \mathcal{E} , we have an equivalence of categories

$$\begin{aligned}
\operatorname{Fun}^{\operatorname{acc}}(\mathcal{D},\mathcal{E}) &\simeq \operatorname{Corr}(\mathcal{D},\mathcal{E}) = \left\{ (\mathcal{T}, i_0, i_1) \middle| \begin{array}{c} i_0 \colon \mathcal{D} \to \mathcal{T} \text{ and } i_1 \colon \mathcal{E} \to \mathcal{T} \text{ are fully faithful} \\ \operatorname{continuous, and} \mathcal{T} &= \langle i_1(\mathcal{E}), i_0(\mathcal{D}) \rangle \end{array} \right\} \\
&i_1^R \circ i_0 \leftrightarrow (\mathcal{T}, i_0, i_1), \\
&F \mapsto \mathcal{E} \oplus_F \mathcal{D} = \{ (x \in \mathcal{E}, y \in \mathcal{D}, x \to F(y)) \} \text{ the oplax limit.} \end{aligned}$$

We obtain a functor

$$\begin{aligned} \mathcal{C} \otimes -: \ \mathrm{Corr}(\mathcal{D}, \mathcal{E}) &\to \mathrm{Corr}(\mathcal{C} \otimes \mathcal{D}, \mathcal{C} \otimes \mathcal{E}), \\ (\mathcal{T}, i_0, i_1) &\mapsto (\mathcal{C} \otimes \mathcal{T}, \mathcal{C} \otimes i_0, \mathcal{C} \otimes i_1). \end{aligned}$$

We want to understand the composition

$$\begin{aligned} \operatorname{Corr}(\mathcal{D}_1, \mathcal{D}_2) \times \operatorname{Corr}(\mathcal{D}_0, \mathcal{D}_1) &\to \operatorname{Corr}(\mathcal{D}_0, \mathcal{D}_2), \\ (\mathcal{T}_{12}, \mathcal{T}_{01}) &\mapsto \mathcal{T}_{02} \subseteq \mathcal{T}_{012} = \mathcal{T}_{01} \sqcup_{\mathcal{D}_1} \mathcal{T}_{12}, \end{aligned}$$

where \mathcal{T}_{02} is generated by the images of \mathcal{D}_0 and \mathcal{D}_2 .

Efimov:flat

Note that

$$\begin{array}{c} (\mathcal{C}\otimes\mathcal{T}_{01}) \bigsqcup_{\mathcal{C}\otimes\mathcal{D}_{1}} (\mathcal{C}\otimes\mathcal{T}_{12}) & \stackrel{\sim}{\longrightarrow} \mathcal{C}\otimes(\mathcal{T}_{01} \sqcup_{\mathcal{D}_{1}}\mathcal{T}_{12}) \\ & \uparrow \\ \mathcal{C}\otimes\mathcal{T}_{02} & \longrightarrow (\mathcal{C}\otimes\mathcal{T}_{01})\circ(\mathcal{C}\otimes\mathcal{T}_{12}). \end{array}$$

The bottom map need not be an equivalence in general, because $\mathcal{C} \otimes \mathcal{T}_{02} \to \mathcal{C} \otimes \mathcal{T}_{012}$ is not fully faithful in general. But if \mathcal{C} is flat, then it is fully faithful, hence we obtain the functor $\mathcal{C} \otimes -: \operatorname{Pr}_{\mathrm{st}}^{\mathrm{acc}} \to \operatorname{Pr}_{\mathrm{st}}^{\mathrm{acc}}$.

We have a fibration $\operatorname{Corr} \to \Delta$ given by

$$\operatorname{Corr}_{n} = \bigsqcup_{(\mathcal{D}_{0},\dots,\mathcal{D}_{n})} \operatorname{Corr}(\mathcal{D}_{0},\mathcal{D}_{1},\dots,\mathcal{D}_{n}),$$
$$\operatorname{Corr}(\mathcal{D}_{0},\mathcal{D}_{1},\dots,\mathcal{D}_{n}) = \left\{ (\mathcal{T},i_{0},\dots,i_{n}) \middle| \begin{array}{l} i_{k} \colon \mathcal{D}_{k} \to \mathcal{T} \text{ are fully faithful, continuous} \\ \mathcal{T} = \langle i_{n}(\mathcal{D}_{n}),\dots,i_{0}(\mathcal{D}_{0}) \rangle \\ \operatorname{If} \mathcal{T}_{k,k+1} \subset \mathcal{T} \text{ is generated by } \mathcal{D}_{k},\mathcal{D}_{k+1}, \text{ then} \\ \mathcal{T} \simeq \mathcal{T}_{01} \sqcup_{\mathcal{D}_{1}} \mathcal{T}_{12} \sqcup_{\mathcal{D}_{2}} \cdots \sqcup_{\mathcal{D}_{n}} \mathcal{T}_{n-1,n} \end{array} \right\}.$$

We have a functor $\mathcal{C} \otimes -: \operatorname{Corr}(\mathcal{D}_0, \mathcal{D}_1, \dots, \mathcal{D}_n) \to \operatorname{Corr}(\mathcal{C} \otimes \mathcal{D}_0, \dots, \mathcal{C} \otimes \mathcal{D}_n)$ and hence we get a map

$$\mathcal{C}\otimes -\colon \operatorname{Corr} \to \operatorname{Corr}$$

of fibrations over Δ .

Proof of Theorem 2.2. We now prove that if \mathcal{C} is flat, then \mathcal{C} is dualizable. Recall that \mathcal{C} is dualizable if and only if (AB6) holds in \mathcal{C} : that is, for all directed posets $J_i, i \in I$, and functors $J_i \to \mathcal{C}, j_i \mapsto x_{j_i}$, then the map

$$\lim_{(j_i)_i \in \prod_i} \prod_{J_i} \prod_i x_{j_i} \xrightarrow{\sim} \prod_i \varinjlim_{j_i} x_{j_i}.$$

We have a commutative square

$$\substack{ \{\texttt{Efimov}: \texttt{AB6} \} \\ (1) }$$

$$\begin{array}{c} \prod_{i} \operatorname{Fun}(J_{i}, \mathcal{C}) \xrightarrow{T = \prod_{i} \operatorname{colim}} \prod_{i} \mathcal{C} \\ \downarrow & & \downarrow \\ V & & \uparrow V = \operatorname{diag} \\ \operatorname{Fun}(\prod_{i} J_{i}, \mathcal{C}) \xrightarrow{W = \operatorname{colim}} \mathcal{C} \end{array}$$

where U is the left Kan extension. Then (AB6) means that the dual Beck–Chevalley condition holds, i.e., $W \circ U^R \xrightarrow{\sim} V^R \circ T$.

Observe that (1) $\simeq C \otimes$ (same square for Sp). Using that $C \otimes$ – is a 2-functor on Pr_{st}^{acc} and using (AB6) for Sp, then it follows that (AB6) holds for \mathcal{C} .

Suppose we have a short exact sequence

$$0 \to \operatorname{Ind}(\mathcal{A}) \xrightarrow{F} \mathcal{C} \xrightarrow{G} \operatorname{Ind}(\mathcal{B}) \to 0$$

with F and G strongly continuous.

Question: Is it true that C is dualizable?

Consider the sequence of adjunctions $G \dashv G^R \dashv G^{RR}$. We have

$$\mathcal{C} = \langle G^R(\mathrm{Ind}(\mathcal{B})), F(\mathrm{Ind}(\mathcal{A})) \rangle \simeq \mathrm{Ind}(B) \oplus_{\Phi} \mathrm{Ind}(\mathcal{A}),$$

 $\mathbf{6}$

where $\Phi := G^{RR} \circ F$ is the gluing datum, imposing that $\operatorname{Hom}_{\mathcal{C}}(x, y) = \operatorname{Hom}_{\operatorname{Ind}(\mathcal{B})}(x, \Phi(y))$ for any $x \in G^{R}(\operatorname{Ind}(\mathcal{B}))$ and $y \in F(\operatorname{Ind}(\mathcal{A}))$.

Observe (almost tautologically) that

$$\operatorname{Fun}^{\operatorname{acc}}(\operatorname{Ind}(\mathcal{A}), \operatorname{Ind}(\mathcal{B})) = \operatorname{Fun}(\mathcal{B}, \operatorname{Pro}(\operatorname{Ind}(\mathcal{A})))^{\operatorname{op}}$$
$$\Phi \mapsto \Psi.$$

Proposition 2.4. With the above notation, the following are equivalent:

(1) C is dualizable.

- (2) C is compactly generated.
- (3) $\operatorname{Im}(\Psi) \subseteq \operatorname{Tate}(\mathcal{A})$, the idempotent-complete stable subcategory of $\operatorname{Pro}(\operatorname{Ind}(\mathcal{A}))$ generated by $\operatorname{Pro}(\mathcal{A})$ and $\operatorname{Ind}(\mathcal{A})$.

Corollary 2.5. We have

$$\operatorname{Ext}^{1}(\mathcal{B},\mathcal{A}) = \{0 \to \mathcal{A} \to \mathcal{D} \to \mathcal{B} \to 0\}$$
$$\simeq \operatorname{Fun}(\mathcal{B},\operatorname{Tate}(\mathcal{A}))^{\simeq}.$$

Proof of Proposition 2.4. We have $\mathcal{A} \subseteq \mathcal{C}^{\omega}$. So if \mathcal{C} is dualizable, then

$$\mathcal{C}/\operatorname{Ind}(\mathcal{A}))^{\omega} = (\mathcal{C}^{\omega}/\mathcal{A})^{\operatorname{idem}},$$

hence for all $x \in (\mathcal{C}/\operatorname{Ind}(\mathcal{A}))^{\omega}$, there exists $y \in \mathcal{C}^{\omega}$ such that $y \mapsto x \oplus x[1]$. We deduce $(1) \iff (2)$. For the equivalence $(2) \iff (3)$ we use that for $x \in \mathcal{B}$ the following are equivalent:

- (i) There exists a lift $y \in \mathcal{C}^{\omega}$ of $x \oplus x[1]$.
- (ii) There is a fiber/cofiber sequence $U \to \Psi(x) \oplus \Psi(x)[1] \to V$ such that $U \in \operatorname{Pro}(\mathcal{A})$ and $V \in \operatorname{Ind}(\mathcal{A})$.

Equivalently, $\Psi(x) \oplus \Psi(x)[1] \in \text{Tate}_{el}(\mathcal{A})$. By Thomason–Trobaugh's theorem, this is equivalent to $\Psi(x) \in \text{Tate}(\mathcal{A})$.

Example 2.6. Consider the sequence

 $0 \to \operatorname{Perf}_{p\operatorname{-tors}}(\mathbb{Z}) \to \operatorname{Perf}(\mathbb{Z}) \to \operatorname{Perf}(\mathbb{Z}[p^{-1}]) \to 0.$

The corresponding \mathbb{Z} -linear functor $\operatorname{Perf}(\mathbb{Z}[p^{-1}]) \to \operatorname{Tate}(\operatorname{Perf}_{p\operatorname{-tors}}(\mathbb{Z}))$ sends $\mathbb{Z}[p^{-1}] \mapsto \mathbb{Q}_p$.

Proposition 2.7. Let k be a field and let $C = \{(V, W \in D(k); \varphi : \bigoplus_{\mathbb{N}} V \to \bigoplus_{\mathbb{N}} W)\}$. A direct computation shows

$$\Psi(k) = \underset{f: \mathbb{N} \to \mathbb{N}}{\overset{"}{\longmapsto}} X_f, \qquad where \ X_f \coloneqq \bigoplus_{n \in \mathbb{N}} k^{f(n)},$$

which is not a Tate object. We need to show that $(\overline{X}_f)_f$ in $\operatorname{Pro}(\operatorname{Calk}(k))$ is not pro-constant. This uses that for $f \leq g$ the transition map $X_g \to X_f$ is a split epimorphism. If $(\overline{X}_f)_f$ were pro-constant, then $(\overline{X}_f)_f$ would be eventually constant, which is false since $\operatorname{fib}(X_{f+1} \to X_f) = \bigoplus_{\mathbb{N}} k$.

Let R be a commutative noetherian ring. Then Neeman showed

$$\begin{cases} \text{localizing subcategories} \\ \text{of } D(R) \end{cases} \cong \{ \text{subsets of Spec}(R) \}, \\ D_S(R) = \langle \kappa(p) \, | \, p \in S \rangle \leftrightarrow S \end{cases}$$

Neeman shows that $D_S(R) \to D(R)$ is strongly continuous if and only if S is closed under specialization.

Efimov:Tate

Theorem 2.8. The following are equivalent for $S \subseteq \text{Spec}(R)$.

- (i) $D_S(R)$ is dualizable.
- (ii) S is convex, i.e., if $x \rightsquigarrow y \rightsquigarrow z$ with $x, z \in S$, then $y \in S$.
- (iii) $D_S(R)$ is compactly generated.

Example 2.9. Let k be a field, take $C = \langle M | M[x^{-1}]/yM[x^{-1}] = 0 \rangle \subseteq D(k[x, y])$. Then C is not dualizable.

Intuitively, $C = \operatorname{QCoh}(\mathbb{A}^2 / \{x = 0, y \neq 0\}).$

3. TALK 3: LOCALIZING INVARIANTS OF CATEGORIES OF SHEAVES

Recall the category

$$\begin{aligned} \operatorname{Shv}_{\geq 0}(\mathbb{R}; \operatorname{Sp}) &\simeq \operatorname{Shv}_{\mathbb{R} \times \mathbb{R}_{\geq 0}}(\mathbb{R}; \operatorname{Sp}) \\ &\simeq \operatorname{Stab}^{\operatorname{cont}}(\mathbb{R} \cup \{\infty\}) = \left\{ F \colon \mathbb{R}^{\operatorname{op}}_{\leq} \to \operatorname{Sp} \, \middle| \, \forall a \in \mathbb{R}, F(a) = \varinjlim_{b < a} F(b) \right\}. \end{aligned}$$

Proposition 3.1. Take any accessible localizing invariant Φ : Cat^{perf} $\rightarrow \mathcal{E}$, where \mathcal{E} is a stable accessible category. Then

$$\Phi^{\text{cont}}(\operatorname{Shv}_{>0}(\mathbb{R};\operatorname{Sp})) = 0.$$

Applications 3.2. (a) $K: \operatorname{Cat}^{\operatorname{perf}} \to \operatorname{Sp}$ commutes with small products.

(b) Computation of $F^{\text{cont}}(\text{Shv}(X;\mathcal{C}))$, where X is a finite CW complex and \mathcal{C} is a dualizable category.

Step 1: K_0 commutes with small products.

Proposition 3.3 (Heller's criterion). If \mathcal{T} is a small triangulated category, and $x, y \in \mathcal{T}$, then the following are equivalent:

- (i) [x] = [y] in $K_0(\mathcal{T})$.
- (ii) There exist $z, u, v \in \mathcal{T}$ and distinguished triangles

$$u \to x \oplus z \to v$$
$$u \to y \oplus z \to v.$$

Corollary 3.4. $K_0(\prod_i \mathcal{T}_i) \xrightarrow{\sim} \prod_i K_0(\mathcal{T}_i).$

Step 2: We have a short exact sequence

$$0 \to \operatorname{Shv}_{\geq 0}(\mathbb{R}; \operatorname{Sp}) \to \operatorname{Fun}(\mathbb{Q}^{\operatorname{op}}_{\leq}, \operatorname{Sp}) \xrightarrow{F} \prod_{\mathbb{Q}} \operatorname{Sp} \to 0,$$

where F is given by

$$F(G)_a = \operatorname{Cone}\left(\varinjlim_{b>a} G(b) \to G(a)\right).$$

Note that F^R is fully faithful, i.e., $F \circ F^R = \text{id.}$ It follows that

$$\operatorname{Shv}_{\geq 0}(\mathbb{R}; \operatorname{Sp}) \simeq F^R \left(\prod_{\mathbb{Q}} \operatorname{Sp}\right)^{\perp} \simeq {}^{\perp} F^R \left(\prod_{\mathbb{Q}} \operatorname{Sp}\right) = \operatorname{Ker}(F).$$

Note also that the categories $\mathcal{A} \coloneqq \operatorname{Fun}(\mathbb{Q}^{\operatorname{op}}_{\leq}, \operatorname{Sp})$ and $\mathcal{B} \coloneqq \prod_{\mathbb{Q}} \operatorname{Sp}$ are compactly generated.

We need to show that $F^{\omega} : \mathcal{A}^{\omega} \to \mathcal{B}^{\omega}$ is a K-equivalence, i.e., there exists $G : \mathcal{B}^{\omega} \to \mathcal{A}^{\omega}$ such that $[F^{\omega} \circ G] = [\mathrm{id}]$ in $K_0(\mathrm{Fun}(\mathcal{B}^{\omega}, \mathcal{B}^{\omega}))$ and $[G \circ F^{\omega}] = [\mathrm{id}]$ in $K_0(\mathrm{Fun}(\mathcal{A}^{\omega}, \mathcal{A}^{\omega}))$. Here, we take $G : \mathcal{B}^{\omega} = \bigoplus_{\mathbb{Q}} \mathrm{Sp}^{\omega} \to \mathcal{A}^{\omega}$ corresponding to $(h_a)_{a \in \mathbb{Q}}$, where

$$h_a(b) = \begin{cases} \mathbb{S}, & \text{if } b \le a, \\ 0, & \text{if } b > a. \end{cases}$$

With this definition, $F^{\omega} \circ G = \text{id.}$ It remains to show $[G \circ F^{\omega}] = [\text{id}]$ in $K_0(\text{Fun}(\mathcal{A}^{\omega}, \mathcal{A}^{\omega}))$.

Proposition 3.5. $K_0(\operatorname{Fun}(\mathcal{A}^{\omega}, \mathcal{A}^{\omega})) = \operatorname{End}(\bigoplus_{\mathbb{O}} \mathbb{Z}).$

Step 3:

Proposition 3.6. Let C be a small idempotent-complete stable category with semi-orthogonal decomposition

$$\mathcal{C} = \langle \mathcal{A}_0, \mathcal{A}_1, \dots \rangle,$$

meaning that $\operatorname{Hom}(\mathcal{A}_i, \mathcal{A}_j) = 0$ for i > j, and the \mathcal{A}_i generate \mathcal{C} . Write $\mathcal{B}_n \coloneqq \langle \mathcal{A}_0, \dots, \mathcal{A}_n \rangle \subseteq \mathcal{C}$. Then we have functors $\mathcal{B}_{n+1} \to \mathcal{B}_n$ which are right adjoint to the inclusion. Consider the composite

$$\varprojlim_n \mathcal{B}_n \to \mathcal{B}_k \xrightarrow{p_k} \mathcal{A}_k$$

where p_k is the right adjoint to the inclusion.

Then the functor

$$\varprojlim_n \mathcal{B}_n \to \prod_{n \in \mathbb{N}} \mathcal{A}_n$$

is a K-equivalence.

Sketch: Write $\mathcal{B} := \varprojlim_n \mathcal{B}_n$ and write $\pi_n \colon \mathcal{B} \to \mathcal{A}_n$. Consider the inclusions $\iota_n \colon \mathcal{A}_n \to \mathcal{B}$, given by compatible functors $\mathcal{A}_n \to \mathcal{B}_n \hookrightarrow \mathcal{B}_k$. Write $\iota \colon \prod_n \mathcal{A}_n \to \mathcal{B}$.

Then $\pi \circ \iota = \text{id of } \prod_n \mathcal{A}_n$.

Claim. $[\iota \circ \pi] = [id]$ in $K_0(\operatorname{Fun}(\mathcal{B}, \mathcal{B})).$

Consider the functor

$$\psi_n \colon \mathcal{B} \to \mathcal{B}_{n-1}^\perp \to \mathcal{B},$$

where each $\mathcal{B}_n \hookrightarrow \mathcal{B}$ (so that the right orthogonal makes sense) and we put $\mathcal{B}_{-1} = 0$. Now observe: consider the exact sequence

$$\bigoplus_{n\geq 1}\psi_n\to \bigoplus_{n\geq 0}\psi_n\twoheadrightarrow\iota\circ\pi,$$

where the first map is induced by the maps $\psi_{n+1} \to \psi_n$. We compute

$$[\mathrm{id}] = [\psi_0] = \left[\bigoplus_{n \ge 0} \psi_n\right] - \left[\bigoplus_{n \ge 1} \psi_n\right] = [\iota \circ \pi].$$

Corollary 3.7. Let $\mathcal{B}_0 \leftarrow \mathcal{B}_1 \leftarrow \mathcal{B}_2 \leftarrow \cdots$ be an inverse system in $\operatorname{Cat}^{\operatorname{perf}}$ such that $\mathcal{B}_{n+1} \rightarrow \mathcal{B}_n$ has a fully faithful right adjoint. Then

$$K_0(\varprojlim_n \mathcal{B}_n) = \varprojlim_n K_0(\mathcal{B}_n).$$

Proof. Apply the above to $\varinjlim_n \mathcal{B}_n$ with respect to the right adjoints. Denote $\mathcal{A}_n = \operatorname{Ker}(\mathcal{B}_{n+1} \to \mathcal{B})$. Then

$$K_0(\varprojlim_n \mathcal{B}_n) \simeq K_0(\prod_n \mathcal{A}_n) = \prod_n K_0(\mathcal{A}_n) = \varprojlim_n K_0(\mathcal{B}_n).$$

Corollary 3.8. $K_0(\operatorname{Fun}(\mathcal{A}^{\omega}, \mathcal{A}^{\omega})) = \operatorname{End}\left(\bigoplus_{\mathbb{Q}} \mathbb{Z}\right).$

Proof. Choose a bijection $\mathbb{N} \xrightarrow{\sim} \mathbb{Q}$, $n \mapsto a_n$. Let $\mathcal{C}_n \subseteq \mathcal{A}^{\omega}$ be a stable subcategory generated by the representable presheaves h_{a_0}, \ldots, h_{a_n} . Then

$$K_{0}(\operatorname{Fun}(\mathcal{A}^{\omega}, \mathcal{A}^{\omega})) = \varprojlim_{n} K_{0}(\operatorname{Fun}(\mathcal{C}_{n}, \mathcal{A}^{\omega})) \simeq \varprojlim_{n} K_{0}(\operatorname{Fun}([n], \mathcal{A}^{\omega}))$$
$$= \varprojlim_{n} \prod_{i=0}^{n} K_{0}(\mathcal{A}^{\omega}) = \operatorname{End}\left(\bigoplus_{\mathbb{Q}} \mathbb{Z}\right),$$
hat

since we know that

$$K_0(\mathcal{A}^{\omega}) = \bigoplus_{\mathbb{Q}} K_0(\mathrm{Sp}^{\omega}) = \bigoplus_{\mathbb{Q}} \mathbb{Z}.$$

Recall the functor $G: \mathcal{B}^{\omega} \to \mathcal{A}^{\omega}$ from the above. Then $(G \circ F^{\omega})(h_a) = h_a$, and this finally implies $[G \circ F^{\omega}] = [\mathrm{id}].$

Theorem 3.9. (1) Let $F, G: \operatorname{Cat}^{\operatorname{perf}} \to \mathcal{E}$ be accessible localizing invariants, let $\varphi: F \to G$ be map, and suppose that \mathcal{E} has a non-degenerate t-structure. Suppose moreover that the induced map $\pi_0\varphi: \pi_0F \to \pi_0G$ on connected components is an isomorphism. Then $\varphi: F \xrightarrow{\sim} G$ is an isomorphism.

(2) $K: \operatorname{Cat}^{\operatorname{perf}} \to \operatorname{Sp}$ commutes with small products.

Proof. For the proof that $(1) \Longrightarrow (2)$ we need to show: for any set I, the map

$$K\left(\prod_{I} \mathcal{C}\right) \xrightarrow{\varphi} \prod_{I} K(\mathcal{C})$$

is an isomorphism. Observe that the source and target are localizing invariants in C and $\pi_0 \varphi$ is an isomorphism.

It remains to prove (1). The fact that $\pi_0 \varphi$ is an isomorphism implies that $\pi_n \varphi$ is an isomorphism for $n \leq 0$. Now, consider the resolution

$$0 \to \mathcal{C} \to \operatorname{Ind}(\mathcal{C}^{\omega_1}) \to \operatorname{Calk}_{\omega_1}(\mathcal{C}) \to 0$$

and proceed by induction.

We also deduce from the proof that for all dualizable categories \mathcal{D} , $\pi_n \varphi_{\mathcal{D}}^{\text{cont}}$ is an isomorphism for $n \leq -1$. Then we use

T ()[1]

$$0 \to \operatorname{Shv}_{>0}(\mathbb{R}; \operatorname{Sp}) \to \operatorname{Shv}_{\geq 0}(\mathbb{R}; \operatorname{Sp}) \xrightarrow{\Gamma_c(-)[1]} \operatorname{Sp} \to 0.$$

An inductive argument shows that $\pi_n \varphi$ is an isomorphism for all $n \in \mathbb{Z}$.

Corollary 3.10. For any accessible localizing invariant $F: \operatorname{Cat}^{\operatorname{perf}} \to \mathcal{E}$ we have

$$F^{\text{cont}}(\operatorname{Shv}(\mathbb{R} \cup \{\infty\}; \operatorname{Sp})) = 0.$$

Proof. Observe the exact sequence

$$0 \to \operatorname{Shv}_{\geq 0}(\mathbb{R}; \operatorname{Sp}) \xrightarrow{\varphi_{\gamma}} \operatorname{Shv}(\mathbb{R} \cup \{\infty\}; \operatorname{Sp}) \xrightarrow{\alpha} \operatorname{Shv}_{\leq 0}(\mathbb{R}; \operatorname{Sp}),$$

where α is the left adjoint to $j_! \varphi_{-\gamma}^*$: Let $\gamma = \mathbb{R}_{\leq 0}$ and write \mathbb{R}_{γ} for \mathbb{R} equipped with the γ -topology $(U \subseteq \mathbb{R}_{\gamma} \text{ is open if } U + \gamma = U \text{ and } U \subseteq \mathbb{R} \text{ is open})$. Similarly, define $\mathbb{R}_{-\gamma}$.

Then $\varphi_{\gamma} \colon \mathbb{R} \to \mathbb{R}_{\gamma}, \, \varphi_{-\gamma} \colon \mathbb{R} \to \mathbb{R}_{-\gamma} \text{ and } \varphi_{\gamma} \colon \mathbb{R} \cup \{\infty\} \to \overline{\mathbb{R}}_{\gamma}.$

Theorem 3.11. Let X be a finite CW complex and let C be a dualizable category. Let $F: \operatorname{Cat}^{\operatorname{perf}} \to \mathcal{E}$ be an accessible localizing invariant.

Then $F^{\text{cont}}(\text{Shv}(X;\mathcal{C})) = F^{\text{cont}}(\mathcal{C})^X$, where the right hand side is the X- ∞ -groupoid.

Observe that for all finite CW complexes Y we have an isomorphism

 $F^{\operatorname{cont}}(\operatorname{Shv}(Y \times [0, 1]; \mathcal{C})) \xrightarrow{\sim} F^{\operatorname{cont}}(\operatorname{Shv}(Y; \mathcal{C})).$

We get a functor $G: (S^{\text{fin}})^{\text{op}} \to \mathcal{E}$ such that $G(X) = F^{\text{cont}}(\text{Shv}(X;\mathcal{C}))$ for any finite CW complex X. We know $G(*) = F^{\text{cont}}(\mathcal{C})$ and $G(\emptyset) = 0$.

We need to show that G commutes with pullbacks. Consider a cellular embedding $X \hookrightarrow Y$ of finite CW complexes, and let $X \to Z$ be some continuous map of finite CW complexes. Then we have a commutative diagram

$$\begin{aligned}
\operatorname{Shv}(Y \sqcup_X Z; \operatorname{Sp}) &\longrightarrow \operatorname{Shv}(Y; \operatorname{Sp}) \\
& \downarrow & \downarrow \\
\operatorname{Shv}(Z; \operatorname{Sp}) &\longrightarrow \operatorname{Shv}(X; \operatorname{Sp})
\end{aligned}$$

which is a pullback square both in Pr_{st}^{L} and in Cat_{st}^{dual} (because the right vertical map is a quotient functor).

We deduce that F^{cont} commutes with such pullbacks:

Lemma 3.12. Let

be a pullback square in $\operatorname{Pr}_{\operatorname{st}}^{L}$. Assume that $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$ are dualizable, all functors are strongly continuous and the right vertical map is a localization.

Then the left vertical map is a localization, $\mathcal{A} = \mathcal{B} \times_{\mathcal{D}}^{\mathrm{dual}} \mathcal{C}$ and

$$F^{\operatorname{cont}}(\mathcal{A}) = F^{\operatorname{cont}}(\mathcal{B}) \times_{F^{\operatorname{cont}}(\mathcal{D})} F^{\operatorname{cont}}(\mathcal{C}).$$

Let X be a locally compact Hausdorff space and let \underline{C} be a presheaf with values in $\operatorname{Cat}_{\mathrm{st}}^{\mathrm{dual}}$ such that $\underline{C}(\emptyset) = 0$.

Theorem 4.1. We have

$$\mathcal{U}_{\rm loc}^{\rm cont}({\rm Shv}(X;\underline{\mathcal{C}})) = \Gamma_c(X; (\mathcal{U}_{\rm loc}(\underline{\mathcal{C}}))^{\sharp}),$$

where \mathcal{U}_{loc} is the universal localizing invariant. The same holds for K-theory.

Let $\mathcal{F} \in \text{Shv}(X;\underline{\mathcal{C}})$. Recall the restriction map $\operatorname{res}_{U,V}:\underline{\mathcal{C}}(U) \to \underline{\mathcal{C}}(V)$ for $V \subseteq U$. Being a sheaf requires that

- (1) $\mathcal{F}(\emptyset) = 0.$
- (2) For open subsets $U, V \subseteq X$ there is a pullback

$$\mathcal{F}(U \cup V) \longrightarrow \operatorname{res}_{U \cup V, U}^{R} \mathcal{F}(U)$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$\operatorname{res}_{U \cup V, V}^{R} \mathcal{F}(V) \longrightarrow \operatorname{res}_{U \cup V, U \cap V}^{R} \mathcal{F}(U \cap V)$$

Efimov:sheaf-3

in $\underline{\mathcal{C}}(U \cup V)$.

(3) $\mathcal{F}(U) = \lim_{V \in U} \operatorname{res}_{U,V}^R \mathcal{F}(V).$

Proposition 4.2. Let $\mathcal{F} \in \text{Shv}(X;\underline{\mathcal{C}})$. The following are equivalent:

- (i) \mathcal{F} is compact.
- (ii) Supp(\mathcal{F}) is compact and \mathcal{F} can be covered by U such that $\mathcal{F}|_{U} \simeq P_{U}$, where $P \in \underline{\mathcal{C}}(U)^{\omega}$.

Proof. The implication (ii) \implies (i) is an easy exercise.

Let us prove (i) \implies (ii):

Step 1: Suppose that $\mathcal{F}_x = 0$ in $\underline{\mathcal{C}}_x$. Then there exists $U \ni x$ such that $\mathcal{F}|_U = 0$. Indeed, we have

$$\mathcal{F} = \lim_{V \Subset X \smallsetminus \{x\}} j_{V!} j_V^* \mathcal{F}.$$

Hence, \mathcal{F} is a summand of some $j_{V!}j_V^*\mathcal{F}$ and thus $\mathcal{F}|_{X \setminus \overline{V}} = 0$.

Exercise: $(-)^{\omega}$: Cat^{dual} \rightarrow Cat^{perf} commutes with filtered colimits. **Step 2:** Suppose $\mathcal{F}_x \neq 0$. Then $\mathcal{F}_x \in \underline{\mathcal{C}}_x^{\omega}$. It follows that there exists $U \ni x$ such that \mathcal{F}_x lifts to $P \in \underline{\mathcal{C}}(U)^{\omega}$. Shrinking U if necessary, we get a map $\varphi \colon P_U \to \mathcal{F}$. Then, choosing $x \in V \Subset U$, we get $\operatorname{Cone}(\varphi)|_{\overline{V}} \in \operatorname{Shv}(\overline{V}; \underline{\mathcal{C}}|_{V})^{\omega}$. Hence, $\operatorname{Cone}(\varphi)|_{W} = 0$ for some $W \ni x$.

Step 3: $\mathcal{F} = \lim_{U \in \mathcal{X}} j_{U!} j_U^* \mathcal{F}$ implies that $\operatorname{Supp}(\mathcal{F})$ is compact.

Remark 4.3. Some proofs use the following fact: There exists a conservative continuous functor $Mot^{loc} \rightarrow Sp.$ This follows from rigidity (hence dualizability) of Mot^{loc} .

Note that

$$\begin{aligned} \operatorname{Shv}(X;\underline{\mathcal{C}}) &\subset & \operatorname{PSh}^{\operatorname{cont}}(X;\underline{\mathcal{C}}) \\ & \downarrow & \downarrow \simeq \\ \operatorname{Shv}_{\mathcal{K}}(X;\mathcal{C}) &\subset & \operatorname{PSh}^{\operatorname{cont}}_{\mathcal{K}}(X;\mathcal{C}), \end{aligned}$$

where PSh^{cont} denotes those presheaves which satisfy (3), and $PSh_{\mathcal{K}}^{cont}$ denotes those presheaves defined on compact subsets such that $\mathcal{F}(Y) = \varinjlim_{Z \supseteq Y} \operatorname{res}_{Z,Y} \mathcal{F}(Z).$

Note that for compact $Y \subseteq X$ we have $\underline{\mathcal{C}}(Y) = \varinjlim_{U \supset Y} \underline{\mathcal{C}}(U)$.

Exercise: We have that

$$\mathcal{U}_{\rm loc}({\rm PSh}_{\mathcal{K}}^{\rm cont}(X;\underline{\mathcal{C}})) = \bigoplus_{\substack{V \subseteq X\\ {\rm open, \ compact}}} \mathcal{U}_{\rm loc}(\underline{\mathcal{C}}(V))$$

Hint: use the semi-orthogonal decomposition $PSh_{\mathcal{K}}(X;\underline{\mathcal{C}}) = \langle \underline{\mathcal{C}}(Y), Y \subset X \text{ compact} \rangle$ and

$$\operatorname{PSh}_{\mathcal{K}}(X;\underline{\mathcal{C}})/\operatorname{PSh}_{\mathcal{K}}^{\operatorname{cont}}(X;\underline{\mathcal{C}}) = \langle \underline{\mathcal{C}}(Y), Y \subset X \text{ compact but not open} \rangle$$

Assuming that X is compact, we have $\operatorname{Shv}(X;\underline{\mathcal{C}}) \simeq \operatorname{Shv}(X \cup \{\infty\}; \underline{j};\underline{\mathcal{C}}).$

Step 4: Approximate $\operatorname{Shv}_{\mathcal{K}}(X;\underline{\mathcal{C}})$ by finite limits of $\operatorname{PSh}_{\mathcal{K}}(Y;\underline{\mathcal{C}})$. If $X = Y_1 \sqcup \cdots \sqcup Y_n$, denoting $Y_I = \bigcap_{i \in I} Y_i$ for $I \neq \emptyset$, then we have the approximation

$$\lim_{\substack{I \neq \emptyset}} \operatorname{PSh}_{\mathcal{K}}^{\operatorname{cont}}(Y_I, \underline{\mathcal{C}}\big|_{Y_I})$$

"Categorify Čech cohomology"

4.1. The internal Hom in Cat_{st}^{dual} .

Theorem 4.4. Let C be a rigid symmetric monoidal category (in particular, C is dualizable). Let A and B be dualizable categories over C.

(1) Suppose that \mathcal{A} is proper and ω_1 -compact.

Then for all uncountable regular cardinals κ , we have

$$\mathcal{U}_{\mathrm{loc}}^{\mathrm{cont}}(\mathrm{\underline{Hom}}^{\mathrm{dual}}(\mathcal{A},\mathcal{B})) \simeq \mathrm{\underline{Hom}}(\mathcal{U}_{\mathrm{loc},\kappa}(\mathcal{A}),\mathcal{U}_{\mathrm{loc},\kappa}(\mathcal{B}))$$

in $\operatorname{Mot}_{\mathcal{C},\kappa}^{\operatorname{loc}}$.

(2) If additionally C is compactly generated, then

$$\mathcal{U}_{\mathrm{loc}}^{\mathrm{cont}}\big(\underline{\mathrm{Hom}}_{\mathcal{C}}^{\mathrm{dual}}(\mathcal{A},\mathcal{B})\big) \simeq \underline{\mathrm{Hom}}\big(\mathcal{U}_{\mathrm{loc}}(\mathcal{A}),\mathcal{U}_{\mathrm{loc}}(\mathcal{B})\big)$$

in $Mot_{\mathcal{C}}^{loc}$.

Definition 4.5. Recall that \mathcal{A} is *proper* if the evaluation functor $\mathcal{A} \otimes_{\mathcal{C}} \mathcal{A}^{\vee} \to \mathcal{C}$ is strongly continuous. We say that \mathcal{A} is ω_1 -compact if $\operatorname{coev}(\mathbf{1}) \in (\mathcal{A} \otimes_{\mathcal{C}} \mathcal{A}^{\vee})^{\omega_1}$.

Corollary 4.6. Let R be a noetherian commutative ring and $I \subseteq R$ an ideal. Then

$$K^{\operatorname{cont}}(\operatorname{Nuc}(R_{\widehat{I}})) \simeq \varprojlim_{n} K(R/I^{n}).$$

Corollary 4.7. If X is a C^0 -manifold and countable at ∞ , then

$$K^{\operatorname{cont}}(\operatorname{coShv}(X;\mathcal{C})) \simeq \mathrm{H}^{\mathrm{BM}}(X;K^{\operatorname{cont}}(\mathcal{C})).$$

Suppose that C = Mod(k), where k is an \mathbb{E}_{∞} -ring. Let R, S be \mathbb{E}_1 -algebras over k. Suppose that $\mathcal{A} = Mod(R)$ and $\mathcal{B} = Mod(S)$.

Then \mathcal{A} is proper if and only if $R \in \operatorname{Perf}(k)$.

Question 4.8. What is $\underline{\operatorname{Hom}}_{k}^{\operatorname{dual}}(\operatorname{Mod}(R), \operatorname{Mod}(S))$?

We use the adjunction

$$\operatorname{Cat}_{k}^{\operatorname{dual}} \xleftarrow{\operatorname{incl}} \operatorname{Pr}_{k,\omega_{1}}^{L},$$
$$\operatorname{Ind}(\mathcal{E}^{\omega_{1}}) \xleftarrow{\mathcal{E}}.$$

Corollary 4.9. We have

 $\underline{\mathrm{Hom}}_{k}^{\mathrm{dual}}(\mathrm{Mod}(R),\mathrm{Mod}(S)) = \mathrm{Ker}^{\mathrm{dual}}(\mathrm{Ind}(\mathrm{BiMod}(R,S)^{\omega_{1}}) \to \mathrm{Ind}(\mathrm{Rep}(R,\mathrm{Calk}_{\omega_{1}}(S)))),$

noting that $\operatorname{BiMod}(R, S) = \operatorname{Rep}(R, \operatorname{Mod}(S)^{\omega_1}).$

Crucial Fact 4.10. The functor

 $\operatorname{Rep}_k(R, \operatorname{Mod}(S)^{\omega_1}) \to \operatorname{Rep}_k(R, \operatorname{Calk}_{\omega_1}(S))$

is a homological epi.

Recall: to show that a functor $\mathcal{D} \to \mathcal{E}$ in $\operatorname{Cat}^{\operatorname{perf}}$ is a homological epi, we need that for all $x, y \in \mathcal{E}$ it holds that

$$\operatorname{Hom}_{\mathcal{E}}(F(-), y) \otimes_{\mathcal{D}} \operatorname{Hom}_{\mathcal{E}}(x, F(-)) \xrightarrow{\sim} \operatorname{Hom}_{\mathcal{E}}(x, y).$$

The left hand side is considered as an object of $\operatorname{Ind}(\mathcal{D}) \otimes_k \operatorname{Ind}(\mathcal{D}^{\operatorname{op}}) \xrightarrow{\operatorname{ev}} \operatorname{Mod}(k)$.

Efimov:fact

Fact 4.11. (1) Suppose that \mathcal{D} is a compactly assembled presentable category (or least assume that strong (AB5) and (AB6) for countable products hold). Let I be a directed poset and $F: \mathbb{N}^{\mathrm{op}} \times I \to \mathcal{D}$ be a functor.

Then

$$\lim_{\varphi \colon \overrightarrow{\mathbb{N}} \to I} \lim_{n \le m} F(n, \varphi(m)) \xrightarrow{\sim} \varprojlim_n \varinjlim_i F(n, i),$$

where $(n \leq m) \in \mathbb{N}^{\mathrm{op}} \times \mathbb{N}$.

- (2) Let \mathcal{D} be as above, and let I, J be directed posets. Let $F \colon \mathbb{N}^{\mathrm{op}} \times \mathbb{N}^{\mathrm{op}} \times I \times J \to \mathcal{D}$. Assume that the following conditions are satisfied:
 - (i) $\lim_{\leftarrow n} \lim_{\leftarrow i} \lim_{k \to i} \lim_{k \to j} F(n,k,i,j) \xrightarrow{\sim} \lim_{\leftarrow n} \lim_{\leftarrow n} \lim_{k \to i} \lim_{k \to j} F(n,k,i,j).$
 - (ii) Same with $n \leftrightarrow k$ and $i \leftrightarrow j$.

Then we have that

$$\lim_{\varphi \colon \overrightarrow{\mathbb{N}} \to I} \lim_{\psi \colon \overrightarrow{\mathbb{N}} \to J} \lim_{n \le m} \lim_{k \le l} F(n,k,\varphi(m),\psi(l)) \xrightarrow{\sim} \lim_{n} \lim_{i \to j} \lim_{j} F(n,n,i,j)$$

Exercise 4.12. (a) Prove a version of Fact 4.11.(1), where $\mathbb{N}^{\text{op}} \times I$ is replaced with a cocartesian fibration $\mathcal{E} \to \mathbb{N}^{\text{op}}$, with directed fibers and cofinal transition maps.

(b) Let I, J, \mathcal{D} and F be as in Fact 4.11.(2), but without assumptions (i) and (ii). Then we have

$$\lim_{\varphi \colon \mathbb{N} \to I} \lim_{\psi \colon \mathbb{N} \to J} \lim_{n \le m \le k \le l} F(n, k, \varphi(m), \psi(l)) \xrightarrow{\sim} \lim_{n \to \infty} \lim_{i \to \infty} \lim_{k \to 0} \lim_{j \to \infty} F(n, k, i, j),$$

where $(n, m, k, l) \in \mathbb{N}^{\mathrm{op}} \times \mathbb{N} \times \mathbb{N}^{\mathrm{op}} \times \mathbb{N}.$

5. Talk 5: Internal Homs and inverse limits in Cat^{dual}

Theorem 5.1. Let C be a rigid base category. Let \mathcal{A}, \mathcal{B} be dualizable categories over C such that \mathcal{A} is proper and ω_1 -compact in $\operatorname{Cat}_{\mathcal{C}}^{\operatorname{dual}}$.

Then $\underline{\operatorname{Hom}}_{\mathcal{C}}^{\operatorname{dual}}(\mathcal{A}, -)$ preserves short exact sequences, i.e., \mathcal{A} is internally projective.

Corollary 5.2. For a regular cardinal $\kappa > \omega_1$ and \mathcal{A} as above, we have

 $\mathcal{U}_{\mathrm{loc},\kappa}(\underline{\mathrm{Hom}}^{\mathrm{dual}}(\mathcal{A},\mathcal{B})) = \underline{\mathrm{Hom}}(\mathcal{U}_{\mathrm{loc},\kappa}(\mathcal{A}),\mathcal{U}_{\mathrm{loc},\kappa}(\mathcal{B})).$

Example 5.3 (Non-example). Let $\mathcal{C} = \text{Sp}$; then $\mathcal{A} = \prod_{x \in [0,1]} \text{Sp}$ is not ω_1 -compact.

Let $\mathcal{C} = \operatorname{Mod}(k)$ and $\mathcal{A} = \operatorname{Mod}(R)$, where $R \in \operatorname{Perf}(k)$. Let $\mathcal{B} = \operatorname{Mod}(S)$.

Key Statement 5.4. The functor $F \colon \operatorname{Rep}(R, \operatorname{Mod}(S)^{\omega_1}) \to \operatorname{Rep}(R, \operatorname{Calk}_{\omega_1}(S))$ is a homological epi.

Proof. Let $M, N \in \mathcal{D} := \operatorname{BiMod}(R, S)^{\omega_1} \cong \operatorname{Rep}(R, \operatorname{Mod}(S)^{\omega_1})$ and put $\mathcal{E} = \operatorname{Rep}(R, \operatorname{Calk}_{\omega_1}(S))$. We need to show that

is an isomorphism and that F is essentially surjective up to retracts. Now, (2) reduces to

 $\mathrm{THC}^*(R/k, \mathrm{Hom}_S(-, S) \otimes_S N) \otimes_{\mathcal{D}} \mathrm{THC}^*(R/k, \mathrm{Hom}_S(M, S) \otimes_S -) \xrightarrow{\sim} \mathrm{THC}^*(R/k, \mathrm{Hom}_S(M, S) \otimes_S N).$

Replace $\operatorname{Hom}_{S}(M, S)$ by an abstract $L \in \operatorname{BiMod}(S, R)$. We thus want to show that

$$\mathrm{THC}^*(R/k, \mathrm{Hom}_S(-, S) \otimes_S N) \otimes_{\mathcal{D}} \mathrm{THC}^*(R/k, L \otimes_S -) \xrightarrow{\sim} \mathrm{THC}^*(R/k, L \otimes_S N)$$

is an isomorphism. Choose an approximation $N = \varinjlim_j N_j$ and $L = \varinjlim_i L_i$, where L_i, N_j are compact bimodules. Furthermore, choose an approximation $R \simeq \varinjlim_n X_n$ in $\operatorname{BiMod}(R, R)$ with $X_n \in \operatorname{Perf}(R \otimes R^{\operatorname{op}})$.

Apply Fact 4.11.(1) and then Fact 4.11.(2) to the functor

$$\mathbb{N}^{\mathrm{op}} \times \mathbb{N}^{\mathrm{op}} \times I \times J \to \mathrm{Mod}(k),$$
$$(n, k, i, j) \mapsto \mathrm{Hom}_{R \otimes R^{\mathrm{op}}}(X_n \otimes_R X_k, L_i \otimes N_j).$$

Remark 5.5. The dual $(-)^{\vee}$: $\operatorname{Cat}_{\operatorname{st}}^{\operatorname{dual}} \to \operatorname{Cat}_{\operatorname{st}}^{\operatorname{dual}}$ is a (covariant!) equivalence; it takes $F \colon \mathcal{C} \to \mathcal{D}$ to $F^{\vee} \colon \mathcal{C}^{\vee} \to \mathcal{D}^{\vee}$.

The proof shows the following: for a map $S \to S'$ of \mathbb{E}_1 -algebras, we have a commutative square

The upper right category is generated by objects of the form $\text{THC}^*(R/k, L \otimes_S -)$.

Corollary 5.6. If $S \to S'$ is a homological epi, then

$$\underline{\operatorname{Hom}}^{\operatorname{dual}}(\operatorname{Mod}(R), \operatorname{Mod}(S)) \to \underline{\operatorname{Hom}}^{\operatorname{dual}}(\operatorname{Mod}(R), \operatorname{Mod}(S'))$$

is a quotient functor.

Example 5.7. Consider a noetherian commutative ring R with an ideal $I \subset R$. We work over R. Define

$$\overline{\operatorname{Nuc}}(R_{\widehat{I}}) \coloneqq \operatorname{\underline{Hom}}_{R}^{\operatorname{dual}}(D_{I\operatorname{-tors}}(R), D(R)) = D_{I\operatorname{-tors}}(R)^{\operatorname{rig}}.$$

If $I = (f_1, \ldots, f_n)$, then $D_{I\operatorname{-tors}}(R) = \operatorname{Mod}(A)$, where $A = \operatorname{End}_R(\operatorname{Kos}(R, f_1, \ldots, f_n)).$

Remark 5.8. Let \mathcal{C} be a locally rigid category. Consider its one-point compactification $\mathcal{C}_+ \subset \operatorname{Ind}(\mathcal{C})$, which is generated under colimits by $\widehat{Y}(\mathcal{C})$ and $\widehat{Y}(\mathbf{1}_{\mathcal{C}})$. For example, $D_{I\text{-tors}}(R)_+ = D(R_{\widehat{I}})$.

Then $\mathcal{C}^{\mathrm{rig}} = \operatorname{\underline{Hom}}_{\mathcal{C}_{\perp}}^{\mathrm{dual}}(\mathcal{C}, \mathcal{C}_{+}).$

Consider the category

$$\underline{\operatorname{Hom}}_{k}^{\operatorname{dual}}(\operatorname{Ind}(\mathcal{A}), \operatorname{Ind}(\mathcal{C})),$$

where \mathcal{A} is proper and ω_1 -compact in $\operatorname{Cat}_k^{\operatorname{perf}}$. Write $\mathcal{A} = \varinjlim_n \mathcal{B}_n$, where each \mathcal{B}_n is a finitely presented (= compact) category over k.

Proposition 5.9. We have that

$$\underline{\operatorname{Hom}}^{\operatorname{dual}}(\operatorname{Ind}(\mathcal{A}), \operatorname{Ind}(\mathcal{C})) = \underbrace{\lim}_{n}^{\operatorname{dual}}(\operatorname{Ind}(\operatorname{Fun}(\mathcal{B}_n, \mathcal{C}))).$$

As a general fact, we have

$$\varprojlim_{i}^{\mathrm{dual}} \mathcal{D}_{i} = \mathrm{Ker}^{\mathrm{dual}} \big(\mathrm{Ind}(\varprojlim_{i} \mathcal{D}_{i}^{\omega_{1}}) \to \mathrm{Ind}(\varprojlim_{i} \mathrm{Calk}_{\omega_{1}}^{\mathrm{cont}}(\mathcal{D}_{i})) \big)$$

Exercise 5.10. $\operatorname{Ring}_{\mathbb{E}_{\infty}} \to \operatorname{Cat}_{\operatorname{st}}^{\operatorname{dual}}, R \mapsto \operatorname{Mod}(R)$ is a sheaf in the descendable topology (in the sense of Akhil Mathew).

Theorem 5.11. We have that

$$K^{\operatorname{cont}}(\varprojlim_{n}^{\operatorname{dual}}\operatorname{Ind}(\operatorname{Fun}(\mathcal{B}_{n},\mathcal{C})))) \xrightarrow{\sim} \varprojlim_{n} K(\operatorname{Fun}(\mathcal{B}_{n},\mathcal{C})).$$

Proposition 5.12. For all n, there exists m > n such that $\mathcal{B}_n \to \mathcal{B}_m$ is trace class in $\operatorname{Cat}_k^{\operatorname{perf}}$.

Together with the theorem, the proposition implies that

$$\operatorname{Hom}(\mathcal{U}_{\operatorname{loc}}(\mathcal{A}),\mathcal{U}_{\operatorname{loc}}(\mathcal{B}))=KK(\mathcal{A},\mathcal{C})=\varprojlim_{n}K(\operatorname{Fun}(\mathcal{B}_{n},\mathcal{C})).$$

Example 5.13. Let $k = \mathbb{Z}[x]$ and $\mathcal{A} = \operatorname{Perf}_{x-\operatorname{tors}}(\mathbb{Z}[x])$, which is proper over $\mathbb{Z}[x]$. Then $\mathcal{A} = \lim_{x \to \infty} D^b_{\operatorname{coh}}(\mathbb{Z}[x]/x^n)$.

Exercise 5.14. The map

$$D^b_{\mathrm{coh}}(\mathbb{Z}[x]/x^n) \to D^b_{\mathrm{coh}}(\mathbb{Z}[x]/x^{2n})$$

is trace class in $\operatorname{Cat}_{\mathbb{Z}[x]}^{\operatorname{perf}}$, and

where \mathcal{B}_n is finitely presented.

Assuming $I = (f) \subset R$, we get

$$K^{\operatorname{cont}}(\widetilde{\operatorname{Nuc}}(R_{\widehat{I}})) = KK_{\mathbb{Z}[x]}(\operatorname{Perf}_{x\operatorname{-tors}}(\mathbb{Z}[x]), \operatorname{Perf}(R)) \xrightarrow{\sim} \varprojlim_{n} K(\operatorname{Fun}(D^{b}_{\operatorname{coh}}(\mathbb{Z}[x]/x^{n}), \operatorname{Perf}(R)) \simeq \varprojlim_{n} K(R/f^{n})$$

Theorem 5.15. Let $\mathcal{D}_1 \leftarrow \mathcal{D}_2 \leftarrow \cdots$ be an inverse system in Cat^{perf} such that

(*) $\varprojlim_n \mathcal{D}_n^{\omega_1} \to \varprojlim_n \operatorname{Calk}_{\omega_1}(\mathcal{D}_n)$ is a homological epi. Then we have

$$K^{\operatorname{cont}}(\varprojlim_n^{\operatorname{dual}}\operatorname{Ind}(\mathcal{D}_n)) \xrightarrow{\sim} \varprojlim_n K(\mathcal{D}_n).$$

Idea. Categorify the fiber sequence

$$\varprojlim_n K(\mathcal{D}_n) \to \prod_n K(\mathcal{D}_n) \to \prod_n K(\mathcal{D}_n).$$

Step 1: Prove

$$K^{\text{cont}}(\varprojlim_n^{\text{dual}} \operatorname{Ind}(\mathcal{D}_n)) \cong \Omega K(\varprojlim_n^{\text{calk}} \operatorname{Calk}_{\omega_1}(\mathcal{D}_n)).$$

Step 2: Use

$$K\left(\varprojlim_{n}^{\operatorname{oplax}}\operatorname{Calk}_{\omega_{1}}(\mathcal{D}_{n})\right) \cong K\left(\prod_{n}\operatorname{Calk}_{\omega_{1}}(\mathcal{D}_{n})\right)$$
$$=\prod_{n}K(\operatorname{Calk}_{\omega_{1}}(\mathcal{D}_{n})).$$

Step 3: Prove that the functor

$$\varprojlim_{n}^{\operatorname{oplax}} \operatorname{Ind}(\mathcal{D}_{n})^{\omega_{1}} / \varprojlim_{n}^{\operatorname{oplax}} \mathcal{D}_{n} \hookrightarrow \varprojlim_{n}^{\operatorname{oplax}} \operatorname{Calk}_{\omega_{1}}(\mathcal{D}_{n})$$

is fully faithful.

It remains to show:

$$\underbrace{\lim}_{n}^{\operatorname{oplax}} \mathcal{D}_n \setminus \underbrace{\lim}_{n}^{\operatorname{oplax}} \operatorname{Ind}(\mathcal{D}_n)^{\omega_1} / \underbrace{\lim}_{n} \operatorname{Ind}(\mathcal{D}_n)^{\omega_1} \xrightarrow{\operatorname{K-equiv.}} \prod_n \operatorname{Calk}_{\omega_1}(\mathcal{D}_n).$$

6. Talk 6: Rigidity of Mot^{loc}

Theorem 6.1. Let \mathcal{C} be a rigid symmetric monoidal category. Then $\operatorname{Mot}_{\mathcal{C}}^{\operatorname{loc}}$, i.e., the target of the universal localizing invariant $\mathcal{U}_{\operatorname{loc}}$: $\operatorname{Cat}_{\mathcal{C}}^{\operatorname{perf}} \to \operatorname{Mot}_{\mathcal{C}}^{\operatorname{loc}}$ commuting with filtered colimits, is rigid.

Corollary 6.2. The category Mot_{C}^{loc} is dualizable (but in general not compactly generated).

Expectation: If $\mathcal{C} \neq 0$, then $\operatorname{Mot}_{\mathcal{C}}^{\operatorname{loc}}$ is not compactly generated. This is known to hold for $\mathcal{C} = D(\mathbb{Q}[x])$.

Consider the case $\mathcal{C} = \operatorname{Mod}(k)$ for some \mathbb{E}_{∞} -ring k. Recall the following definitions:

Definition 6.3 (Kontsevich). Let \mathcal{D} be a dualizable k-linear category.

- (1) \mathcal{D} is called *proper* over k if ev: $\mathcal{D} \otimes_k \mathcal{D}^{\vee} \to \operatorname{Mod}(k)$ is strongly continuous.
- (2) \mathcal{D} is called *smooth* over k if coev: $\operatorname{Mod}(k) \to \mathcal{D} \otimes_k \mathcal{D}^{\vee}$ is strongly continuous, i.e., $\operatorname{coev}(k)$ is compact.

A category $\mathcal{A} \in \operatorname{Cat}_k^{\operatorname{perf}}$ is called *smooth* or *proper* if $\operatorname{Ind}(\mathcal{A})$ is.

Note that $\operatorname{Cat}_{k}^{\operatorname{perf}}$ is compactly generated.

Proposition 6.4 (TV). If \mathcal{A} is a finitely presented (compact) category, then \mathcal{A} is smooth. If \mathcal{A} is smooth and proper, then \mathcal{A} is finitely presented.

Let $\mathcal{A} = \operatorname{Perf}(A)$, where A is a finitely presented object of $\operatorname{Alg}_{\mathbb{E}_1}(\operatorname{Mod}(k))$. Then for all ind-systems $(M_i)_i$ in $\operatorname{BiMod}(A, A)$, we have

$$\operatorname{Map}_{\operatorname{BiMod}(A,A)}(\Omega_{A/k}, \varinjlim_{i} M_{i}) \simeq \operatorname{Mod}_{\operatorname{Alg}_{\mathbb{E}_{1}}(\operatorname{Mod}(A))}(A, A \oplus \varinjlim_{i} M_{i})$$
$$\simeq \varinjlim_{i} \operatorname{Map}_{\operatorname{Alg}_{/A}}(A, A \oplus M_{i})$$
$$\simeq \varinjlim_{i} \operatorname{Map}_{\operatorname{BiMod}(A,A)}(\Omega_{A/k}, M_{i}).$$

This implies $\Omega_{A/k} := \operatorname{fib}(A \otimes A \to A) \in \operatorname{Perf}(A \otimes A^{\operatorname{op}}).$

Definition 6.5. A k-linear category $\mathcal{B} \in \operatorname{Cat}_{k}^{\operatorname{perf}}$ is called *nuclear* if for all finitely presented categories \mathcal{A} the natural map

$$\operatorname{Fun}_k(\mathcal{A}, \operatorname{Perf}(k)) \otimes_k \mathcal{B} \xrightarrow{\sim} \operatorname{Fun}_k(\mathcal{A}, \mathcal{B})$$

is an isomorphism.

Exercise 6.6. If \mathcal{A} is smooth and \mathcal{B} is proper, then

 $\operatorname{Fun}_k(\mathcal{A}, \operatorname{Perf}(k)) \otimes_k \mathcal{B} \xrightarrow{\sim} \operatorname{Fun}_k(\mathcal{A}, \mathcal{B}).$

Corollary 6.7. Any proper category is nuclear.

To prove rigidity of Mot_k^{loc} , we need:

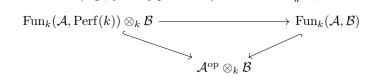
- (i) $\mathcal{U}_{loc}(k)$ is compact.² In fact, one can show $Map(\mathcal{U}_{loc}(k), \mathcal{U}_{loc}(\mathcal{A})) = K(\mathcal{A})$. (ii) The category Mot_k^{loc} is generated by objects of the form $\varinjlim(x_1 \to x_2 \to \cdots)$ such that the transition maps $x_n \to x_{n+1}$ are trace class.

Suppose that \mathcal{B} is a nuclear object of $(\operatorname{Cat}_{k}^{\operatorname{perf}})^{\omega_{1}}$. Then $\mathcal{B} \simeq \underline{\lim}(\mathcal{A}_{1} \to \mathcal{A}_{2} \to \cdots)$, where each \mathcal{A}_n is finitely presented and the transition maps $\mathcal{A}_n \to \mathcal{A}_{n+1}$ are trace class. Moreover,

$$\mathcal{U}_{\mathrm{loc}}(\mathcal{B}) = \varinjlim_n \mathcal{U}_{\mathrm{loc}}(\mathcal{A}_n)$$

and the transition maps $\mathcal{U}_{\text{loc}}(\mathcal{A}_n) \to \mathcal{U}_{\text{loc}}(\mathcal{A}_{n+1})$ are trace class. We only need to show that $\text{Mot}_k^{\text{loc}}$ is generated under colimits by $\mathcal{U}_{loc}(\mathcal{B})$, where \mathcal{B} is nuclear and ω_1 -compact.

Lemma 6.8. If \mathcal{A} is smooth (e.g., finitely presented) and $\mathcal{B} \in \operatorname{Cat}_k^{\operatorname{perf}}$, then



is fully faithful.

Proof. This is an exercise.

Corollary 6.9. The class of nuclear objects of $\operatorname{Cat}_k^{\operatorname{perf}}$ is closed under:

- (a) filtered colimits;
- (b) semi-orthogonal decompositions;
- (c) taking full subcategories; indeed, if $\mathcal{B}' \subseteq \mathcal{B}$, where \mathcal{B} is nuclear, then

and this formally implies that \mathcal{B}' is nuclear.

Suppose $\mathcal{C} = \operatorname{Perf}(R)$. Define a k-enriched category \mathcal{B} with $\operatorname{ob}(\mathcal{B}) = \mathbb{N}$ and

$$\operatorname{Hom}_{\mathcal{B}}(n,m) = \begin{cases} R, & \text{if } n < m, \\ k, & \text{if } n = m, \\ 0, & \text{if } n > m. \end{cases}$$

 2 This is due to BGT.

Then we have an exact sequence

$$0 \to \operatorname{Ker} \to \operatorname{Fun}_k(\mathcal{B}^{\operatorname{op}}, \operatorname{Mod}(k))^{\omega} \to \operatorname{Perf}(R) \to 0,$$

where Ker is generated by $\operatorname{Cone}(h_{x_n} \to h_{x_{n+1}})$, and the right map is induced by $h_{x_n} \mapsto R$. (This should be "familiar" to symplectic geometers.)

By the above, the category $\operatorname{Fun}_k(\mathcal{B}^{\operatorname{op}}, \operatorname{Mod}(k))^{\omega}$ is nuclear (it has a countable semi-orthogonal decomposition into $\operatorname{Perf}(k)$). Hence, also Ker is nuclear.

Let C be a rigid category. We want a good notion of nuclearity with the required properties (in particular, full subcategories of nuclear categories should be nuclear).

Fact 6.10. The category $\operatorname{Cat}_{\mathcal{C}}^{\operatorname{perf}} \simeq \operatorname{Cat}_{\mathcal{C}}^{\operatorname{cg}}$ is compactly assembled, and the functor $\widehat{Y} \colon \operatorname{Cat}_{\mathcal{C}}^{\operatorname{perf}} \to \operatorname{Ind}(\operatorname{Cat}_{\mathcal{C}}^{\operatorname{perf}})$

is symmetric monoidal.

Definition 6.11. A category \mathcal{B} is called *nuclear* if for any $\mathcal{A} \in (\operatorname{Cat}_{\mathcal{C}}^{\operatorname{perf}})^{\omega_1}$ such that $\widehat{Y}(\mathcal{A}) = \varinjlim(\mathcal{A}_1 \to \mathcal{A}_2 \to \cdots)$, the natura lmap

$$\underbrace{\lim_{n} \operatorname{\underline{Wom}}_{\mathcal{C}}(\mathcal{A}_{n},\mathcal{C}) \otimes \mathcal{B} \xrightarrow{\sim} \operatorname{\underline{Wom}}_{n} \operatorname{\underline{Hom}}_{\mathcal{C}}(\mathcal{A}_{n},\mathcal{B})}_{n}$$

is an isomorphim.

The most difficult part is proving that, if \mathcal{B} is nuclear, then any subcategory $\mathcal{B}' \subseteq \mathcal{B}$ is nuclear (where "subcategory" means "generated by relatively (to \mathcal{C}) compact objects").

We need to show the following: for any small \mathcal{C} -enriched category \mathcal{B} and any compact map $R \to S$ in $\operatorname{Alg}_{\mathbb{E}_1}(\mathcal{C})$, consider the commutative square

$$\begin{array}{c} \operatorname{Rep}(R, \mathcal{C}^{\omega}) \otimes \mathcal{B} & \longrightarrow & \operatorname{Rep}(R, \mathcal{B}) \\ & \uparrow & \uparrow \\ & & \uparrow \\ \operatorname{Rep}(S, \mathcal{C}^{\omega}) \otimes \mathcal{B} & \longrightarrow & \operatorname{Im}(G) \subseteq \operatorname{Rep}(S, \mathcal{B}). \end{array}$$

We want to construct a functor $\operatorname{Im}(G) \to \operatorname{Rep}(R, \mathcal{C}^{\omega}) \otimes \mathcal{B}$ such that all triangles commute.

This reduces to proving that there exists a map of \mathbb{E}_1 -coalgebras in $\mathrm{Ind}(\mathrm{BiMod}(S, S))$:

 $(*) \ Y(S \otimes_R S) \to \widehat{Y}(S)$

such that after applying \varinjlim_{K} , we get the canonical map $S \otimes_R S \to S$ as \mathbb{E}_1 -coalgebras in BiMod(S, S). The map (4) reduces \overleftarrow{to} a version of an asymptotic for "lim" $(S \oplus M)$

The map (*) reduces to a version of an argument of Toën–Vaquié for " \varinjlim_{i} " $(S \oplus M_i)$.

Theorem 6.12. Let R be a connective \mathbb{E}_1 -ring. Then

$$\operatorname{Hom}_{\operatorname{Mot}^{\operatorname{loc}}}\left(\widetilde{\mathcal{U}}_{\operatorname{loc}}(\mathbb{S}[x]), \mathcal{U}_{\operatorname{loc}}(R)\right) = \operatorname{TR}(R) = \Omega \varinjlim_{n} \widetilde{K}(R[x^{-1}]/x^{-n}).$$

Idea. Prove

$$\widetilde{\mathcal{U}}_{\mathrm{loc}}(\mathbb{S}[x]) = \Sigma \widetilde{\mathcal{U}}_{\mathrm{loc}}(\mathrm{Perf}_{\{\infty\}}(\mathbb{P}^1_{\mathbb{S}}))$$

and

$$\operatorname{Perf}_{\{\infty\}}(\mathbb{P}^1_{\mathbb{S}}) = \varinjlim_{n} \mathcal{A}_n, \quad \text{where } \mathcal{A}_n = \operatorname{Perf}(\operatorname{Cobar}(\mathbb{S}[x^{-1}]/x^{-n})^*).$$

It then follows that

$$\operatorname{Hom}(\Sigma \widetilde{\mathcal{U}}_{\operatorname{loc}}(\operatorname{Perf}_{\{\infty\}}(\mathbb{P}^1_{\mathbb{S}}), \mathcal{U}_{\operatorname{loc}}(R))) = \Omega \varprojlim_n \widetilde{K}(\operatorname{Fun}(\mathcal{A}_n, \mathcal{U}_{\operatorname{loc}}(R[x^{-1}]/x^{-n}))).$$

Next, we use the following

Lemma 6.13. Suppose
$$\mathcal{B} = \varinjlim_n \mathcal{B}_n$$
 where the transition maps $\mathcal{B}_n \to \mathcal{B}_{n+1}$ are trace class. Then
 $\operatorname{Map}_{\operatorname{Mot}^{\operatorname{loc}}}(\mathcal{U}_{\operatorname{loc}}(\mathcal{B}), \mathcal{U}_{\operatorname{loc}}(\mathcal{C})) = \varprojlim_n K(\operatorname{Fun}(\mathcal{B}_n, \mathcal{C}))$
 $= \varprojlim_n K(\operatorname{Fun}(\mathcal{B}_n, \operatorname{Sp}^{\omega}) \otimes \mathcal{C}).$

Theorem 6.14. Consider a smooth scheme X over k, and suppose that there exists a smooth compactification $X \subset \overline{X}$. Then

$$KK^{\mathcal{K}}(\operatorname{Perf}(X), \operatorname{Perf}(k)) = \operatorname{fib}\left(K(\overline{X}) \to K^{\operatorname{cont}}(\overline{X}_{(\overline{X \setminus X})})\right) \simeq \operatorname{fib}\left(K(X) \to K^{\operatorname{cont}}(\widehat{X}_{\infty})\right).$$

Theorem 6.15. Suppose that k is a regular noetherian ring and X is a proper scheme over k. Then $KK^{\mathcal{K}}(\operatorname{Perf}(X), \operatorname{Perf}(k)) = G(X) = K(\operatorname{Coh} X).$

Consider the following functors:

$$\operatorname{Mot}^{\operatorname{loc,cyc}} \xrightarrow{j_!} \operatorname{Mot}^{\operatorname{loc}} \xrightarrow{i^*} \operatorname{Mot}^{\operatorname{loc},\mathbb{A}^1} = \operatorname{Mod}(|\mathcal{U}_{\operatorname{loc}}(\Delta)|).$$

Theorem 6.16. For a connective \mathbb{E}_1 -ring R we have

$$\operatorname{Map}(j_! \mathbf{1}, \mathcal{U}_{\operatorname{loc}}(R)) = \operatorname{TC}(R).$$

Suppose k is a $\mathbb Q\text{-algebra}.$ We have a commutative diagram

$$\operatorname{Mot}_{k}^{\operatorname{loc}} \xrightarrow{\operatorname{HC}^{-}} \operatorname{Mod}_{\widehat{u}}(k[[u]])$$
$$\underset{\operatorname{HC}^{-,\operatorname{ref}}}{\stackrel{\uparrow}{\longrightarrow}} \operatorname{Nuc}(k[[u]]),$$

where $\deg u = 2$.

Exercise 6.17. For $k = \mathbb{Q}[x]$, we have

$$\mathrm{HC}^{-,\mathrm{ref}}(\mathbb{Q}[x,x^{-1}]/\mathbb{Q}[x]) = \mathcal{O}\Big(\bigcap_{n>0}\{|u| \le |x|^n \ne 0\}\Big),$$

where the right hand side is not generated by compact objects of $Nuc(\mathbb{Q}[x][[u]])$.

Corollary 6.18. Mot^{loc}_{$\mathbb{Q}[x]} is not compactly generated.$ </sub>