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1. TaLK 1

Consider a gcgs scheme X. There are two categories associated with X: the category Perf(X) =
Dy (X)“ of perfect complexes and Dy (X) = Ind(Perf(X)).
There are two invariants we might consider:
K(X) = K(Perf(X))
HH(X) = HH(Perf(X)),
K(Dq (X)) =0.
The idea is to understand K (X) in terms of Dqc(X).

1.1. Compactly assembled categories. Compactly assembled categories were first developed by
Lurie, Joyal, Johnstone etc.
If C = Ind(A), then for all z € C we have an ind-system (x;); with x; € C¥ such that « = lim ;.
i

Observe that the assignment z +— ligq”i x; is gives a well-defined functor
Y:C — Ind(C),
which is left adjoint to colim: Ind(C) — C.

Definition 1.1. Let C be an accessible oo-category with filtered colimits. Then C is compactly
assembled if there exists Y: C — Ind(C) which is left adjoint to colim.

Example 1.2. (1) Ind(A) is compactly assembled.
(2) (RU {400}, <) is compactly assembled with Y (a) = lim”, _ b.
1
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(3) Let X be a locally compact Hausdorff space. Then Open(X) is compactly assembled with
Y(U)=* lim” V. Also, K(X )°P is compactly assembled with Y (Z) = * lim” A

(4) Exercise: Let Seminorm; be the category of R-vector spaces with a seminorm ||-|| and
contractible maps (i.e., |f(2)] < ||z]|). If dimV < co and (V, ||-||) is normed, then

YV, [-) = T ”(V; e]|-[])

c>1

and Y (R,0) =“lim”__ (R,el|),

(5) Shv(X,C) is compactly assembled, where X is a locally compact Hausdorff space and C is a
presheaf of dualizable categories.

(6) The categories Nuc(R7) and Nuc(R7) of nuclear modules are compactly assembled, and
NuC(Rf)‘*’ = Perf(R;).

(7) Let R be an associative ring and J C R an ideal which is flat as a right module and satisfying
J? =J. Put

Mod,(R) = Mod(R)/ Mod(R/J)
Then D(Mod,(R)) is compactly assembled.

We introduce the following notation:

o Cat!®™ is the category of small idempotent complete categories,

o CatP is the category of small idempotent complete stable categories, and

e CompAss is the category of compactly assembled categories, where the 1-morphisms are the
strongly continuous functors, i.e., F': C — D such that F' commutes with filtered colimits
and the diagram

—F 4

<)

C) m Ind(D).

e Denote Catgt“al C CompAss the subcaetgory of compactly assembled stable categories with
strongly continuous exact functors. Note that both Catdual and CompAss are cocomplete.

!
(

Ind

Proposition 1.3 (Lurie). (1) Cat'™ is generated under colimits by [1], which is compact.
(2) CatP*! is generated under colimits by Sp*, which is compact.

Sketch. Let F': C — D such that Fun([1],C) = Fun([1], D). Then F is an equivalence. O
Efimov:Urysohn
Theorem 1.4 (Urysohn’s lemma). (1) CompAss is generated under colimits by RU{oo}, which

18 w1 -compact.
(2) Catdua] is generated under colimits by Shvgxgr.,(R;Sp).
In particular, CompAss and Catd“aLl are wy —presentablel

Remark 1.5. The usual Urysohn’s lemma for compact Hausdorff spaces says that CompHaus®P is
generated under colimits by [0, 1], which is w;-compact.

IThe last statement ist due to Ramzi.
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Fact 1.6. We have an equivalence CompAss > Cat?"®! where Cat?"® is the category of dualizable
objects in Pr” whose 1-morphisms are those functors F': C — D for which the right adjoint F? is
colimit-preserving. The equivalence takes

Ind(A) <> PSh(A; Ani),

. (oD ;
Cr {F C* — Ani cofiltered limits

F commutes with }
b

{G: DV — Ani

G is colimit preserving
and left exact “D.

Why is CompAss generated by R U {oo}? It suffices to show that if F: C — D is strongly
continuous such that

Funstr‘cont. (R U {OO}, C): ~ Funstr.cont.(R U {OO}, D):’
then F is an equivalence.
Proposition 1.7. Any compactly assembled category is wy-accessible.
Sketch. We have f/(x) = “lim” x;, where I is a directed poset. Then = ~ h_n>1 ligle(n), where

i€l f:N>I n
Tf(n) 18 wi-compact. O

<

Definition 1.8. In a compactly assembled category, a map f: x — y is compact if it factors as

Y (f)
Lemma 1.9. If C is compactly assembled, and f: x — y in C is compact, then f = g o h such that
g, h are compact.

Y (x) Y(y)

|
Y (y).

Sketch. Write ?(y) = “lim”“lim” y;. Then ?(y) = hgq}/}(yl)7 so we have a factorization

where g and h are compact. O

Lemma 1.10. The functor

Fun®™ " (R U {o0},C) — C**,
G +— G(c0)

s essentially surjective.
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Proof. Let x € C**. Then ?(m) = “lim”(xg — 1 — ---) such that each z,, — x,4+1 is compact.
Define Go: Z U {o0} — C by
x, if h = oo,
G(m) =S zp, ifm >0,
0, if m <0.

Inductively, define compatible G, : = 5w
obtain G: Z[1/2] U {o0} — C and put

L/ u{ccl =€, G(r) =l G(b).

b<r

5= Z U {00} — C such that all transition maps are compact. We

Take a left Kan extension of G’ to RU {oo} to get a strongly continuous functor H: RU {0} — C
such that H(c0) = x. O

For F' as above, we already know that F“1: C¥t — D“1 is essentially surjective. In order to finish
the proof of Theorem (1), we need to show that it is fully faithful. Consider the pullback diagram

lim Mape (G(0), H(a)) Fun™" " (R U {c0}, )~

o J

* —>(G ) Funstt-cont- (R<o,C)™ x Funstr-cont- (Rso U {0}, C)=.

It follows that lim Mapc(G(0), H(a)) > i wMapD(F(G(O)), F(H(a))).
G, H:R

a>0 a>0
Given strongly continuous functors G, H: RU {co} — C, we get
Mape(G(00), (<)) = lim lim Mape (G(a), H(b))
a<oo b<oo

= lim Ly b Mape (G(0) H0)

Hence, F“* is fully faithful.
The functor ¢: Ca‘cft“aLl — CompAss is conservative and commutes with filtered colimits. It has a
left adjoint
Stab®™: CompAss — Catdua!,
C— {F:C° — Sp| F commutes with filtered colmilits} .
It follows that Stab®"*(R U {c0}) = Shvgxr., (R, Sp) generates Catdu!

Proposition 1.11. For a sheaf F € Shv(R, Sp), the following are equivalent:

(1) The singular support (microsupport) SS(F) is a subset of R x R>q.
(2) For all a < b, F((—o0,b)) = F((a,b)).
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Corollary 1.12. We have equivalences

Shvexr., (R, Sp) ~ {F1 (R<)°P — Sp

Va € R, F(a) = lim F(b)}
<a
~ Stab®™ (R U {oc}).

2. TALK 2

Definition 2.1. Let C be a presentable stable category. Then C is called flat if C ® —: Prk — Prk
preserves fully faithful functors.

Question: Is every C € Plrs]ft flat?
Efimov:flat

Theorem 2.2. C is flat if and only if C is dualizable.

Proof. If C is dualizable, then C is obviously flat, since C ® — = Fun’(CY, —). The other direction
will be proved below. O

Notation. Let Pri;® be the (o0, 2)-category of presentable stable categories and accessible exact
functors.

Proposition 2.3. (a) For any C € Pré, there exists a natural oplax 2-functor C ® —: Pri® —

Prif® (meaning that there are 2-morphisms C® (F o G) = (C® F) o (C® G) which need not
be invertible) which extends the usual 2-functor C ® —: Prh — Prk.
(b) If C is flat, then C ® — is an honest 2-functor.

Assume that C is k-presentable and F': D — £ is an accessible functor. Then
C®F:C®D~Fun™((C")°", D) 2= Fun((C*)°, &) — Fun™'((C*)°?,€) X C ® €,

where the second map is given by the left adjoint to the inclusion.

Observation: For presentable stable D, £, we have an equivalence of categories

i0: D — T and iy : &€ — T are fully faithful }

Fun®™(D, &) = Corr(D, £) = {(T’ 0, 1) continuous, and T = (i1(£),i0(D))

it 0o <+ (T, do, 1),
F—E&opD={(xe&yeD,x— F(y))} the oplax limit.
We obtain a functor
C® —: Corr(D,&) — Corr(CD,CRE),
(Tioyi1) = (C®T,C @19, C @iy).
We want to understand the composition
Corr(Dy,D2) x Corr(Dgy, D1) — Corr(Dy, Ds),
(Th2, Tor) = Toz2 € Tor2 = To1 Up, T2,
where 7o is generated by the images of Dy and Ds.
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Note that
(€@ To1) Uegp, (C® Tiz) —— C@ (To1 Up, Th2)

J

CRTpa ————— (C®Tp1) © (C® Th2)-

The bottom map need not be an equivalence in general, because C® 72 — C® To12 is not fully faithful
in general. But if C is flat, then it is fully faithful, hence we obtain the functor C ® —: Pri® — Prifc.
We have a fibration Corr — A given by

Corr,, = |_| Corr(Dg, Dy, ..., Dy),
(Do,...,Dn)
ig: D — T are fully faithful, continuous
If Ty k+1 C T is generated by Dy, D41, then
T =~ To1 Up, Ti2Up, -+ Up, Tn-1,n
We have a functor C ® —: Corr(Dy, Dy, ..., D,) = Corr(C ® Dy, ...,C ® D,) and hence we get a

map

COI‘I‘(DQ,Dl,...,Dn) = (T,io,...7in)

C® —: Corr — Corr

of fibrations over A.

Proof of Theorem[2.34 We now prove that if C is flat, then C is dualizable. Recall that C is dualizable
if and only if (AB6) holds in C: that is, for all directed posets J;, ¢ € I, and functors J; = C, j; — z;,,

then the map
%ﬂ ijzl)thnsz

a)i€ll; Ji i i Ji
We have a commutative square
T=J], colim
Hi Fun(Jia C) - Hz ¢

{Efimov: AB(BI UT Tv =diag

Fun([], Ji,C)

W =colim

where U is the left Kan extension. Then (AB6) means that the dual Beck-Chevalley condition holds,
ie., WoUlR S VEoT,

Observe that ~ C ® (same square for Sp). Using that C ® — is a 2-functor on Pri® and using
(AB6) for Sp, then it follows that (AB6) holds for C. O

Suppose we have a short exact sequence
0 — Ind(A) 5 ¢ S d(B) — 0

with F' and G strongly continuous.
Question: Is it true that C is dualizable?
Consider the sequence of adjunctions G 4 G* 4 GFF. We have

C = (GR(Ind(B)), F(Ind(A))) ~ Ind(B) ®¢ Ind(A),
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where ® := G o F is the gluing datum, imposing that Home (z,y) = Hompy,q(s)(z, ®(y)) for any
r € GE(Ind(B)) and y € F(Ind(A)).
Observe (almost tautologically) that
Fun®*(Ind(A), Ind(B)) = Fun(B, Pro(Ind(.A)))°?
- V.

Efimov:Tate
Proposition 2.4. With the above notation, the following are equivalent:

(1) C is dualizable.
(2) C is compactly generated.
(3) Im(¥) C Tate(A), the idempotent-complete stable subcategory of Pro(Ind(.A)) generated by
Pro(A) and Ind(A).
Corollary 2.5. We have
Ext'(B,A)={0 - A— D — B—0}
~ Fun(B, Tate(A))~.
Proof of Proposition[2.], We have A C C¥. So if C is dualizable, then
(C/Ind(A))* = (€ /A)em,
hence for all z € (C/Ind(A))“, there exists y € C¥ such that y — = @ x[1]. We deduce (1) <> (2).
For the equivalence (2) <= (3) we use that for « € B the following are equivalent:
(i) There exists a lift y € C¥ of © @ z[1].
(ii) There is a fiber/cofiber sequence U — ¥(x) @ ¥(x)[1] — V such that U € Pro(A) and
V € Ind(A).

Equivalently, ¥(x) @ ¥(z)[1] € Tateq(A). By Thomason—Trobaugh’s theorem, this is
equivalent to ¥(x) € Tate(A).

O
Example 2.6. Consider the sequence
0 — Perf, tors(Z) — Perf(Z) — Perf(Z[p~']) — 0.
The corresponding Z-linear functor Perf(Z[p~']) — Tate(Perf, tors(Z)) sends Z[p~!] — Q,.

Proposition 2.7. Let k be a field and let C = {(V,W € D(k);p: @yV — @yW)}. A direct
computation shows
U(k) = “lim” X, where X; = K™,
f: N=>N neN
which is not a Tate object. We need to show that (X s)s in Pro(Calk(k)) is not pro-constant. This
uses that for f < g the transition map X4 — Xy is a split epimorphism. If (Yf)f were pro-constant,
then (X ¢) s would be eventually constant, which is false since fib(X;y1 — X¢) = Py k-

Let R be a commutative noetherian ring. Then Neeman showed
localizing subcategories
of D(R)
Ds(R) = (k(p) [p € §) <= S
Neeman shows that Dg(R) — D(R) is strongly continuous if and only if S is closed under
specialization.

} = {subsets of Spec(R)},
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Theorem 2.8. The following are equivalent for S C Spec(R).
(i) Ds(R) is dualizable.
(i) S is convez, i.e., if x ~> y~> z with x,z € S, then y € S.
(i1i) Ds(R) is compactly generated.
Example 2.9. Let k be a field, take C = (M | M[z~!]/yM[z=1] = 0) C D(k[z,y]). Then C is not

dualizable.
Intuitively, C = QCoh(A?/{z = 0,y # 0}).

3. TALK 3: LOCALIZING INVARIANTS OF CATEGORIES OF SHEAVES

Recall the category
Shv>o(R; Sp) >~ Shveyxr., (R;Sp)

~ Stab®™(R U {oc}) = {F: RY — Sp|Va € R, F(a) = th(b)} :

b<

Proposition 3.1. Take any accessible localizing invariant ®: CatPt — &, where £ is a stable
accessible category. Then
" (Shvso(R; Sp)) = 0

Applications 3.2. (a) K: CatP! — Sp commutes with small products.
(b) Computation of F¢(Shv(X;C)), where X is a finite CW complex and C is a dualizable
category.

Step 1: Ky commutes with small products.

Proposition 3.3 (Heller’s criterion). If T is a small triangulated category, and x,y € T, then the
following are equivalent:

(i) [z] = [y] in Ko(T).
(ii) There exist z,u,v € T and distinguished triangles

u—rdz—v
u—YDdz—0.

Corollary 3.4. Ko(I], ;) = [1, Ko(T:).
Step 2: We have a short exact sequence

0 — Shvo(R; Sp) — Fun(Q%, Sp) H Sp — 0,
Q

where F' is given by
F(G), = Cone(lig G(b) — G(a)).
b>a
Note that F is fully faithful, i.e., F o F® =id. It follows that

Shvso(R;Sp) ~ F! (H Sp) ~ 1k (H Sp) Ker(F).
Q

Note also that the categories A := Fun(QZ, Sp) and B := H@ Sp are compactly generated.
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We need to show that F“: AY — B is a K-equivalence, i.e., there exists G: BY — A% such that
[F“ o G] = [id] in Ko(Fun(B¥,B%)) and [G o F*] = [id] in Ko(Fun(A¥, A%)).
Here, we take G: BY = @Q Sp“ — A¥ corresponding to (hq)qcq, where

= s
With this definition, F“ o G = id. It remains to show [G o F*] = [id] in Ky(Fun(A¥, A¥)).
Proposition 3.5. Ko(Fun(A“, A*)) = End(Py Z).
Step 3:

Proposition 3.6. Let C be a small idempotent-complete stable category with semi-orthogonal
decomposition

C= (Ao, Ay,...),
meaning that Hom(A;, A;) = 0 fori > j, and the A; generate C. Write B, = (Ay,..., An) CC.
Then we have functors B,11 — B, which are right adjoint to the inclusion. Consider the composite

lim B, = B, =+ Ap,
n
where py is the Tight adjoint to the inclusion.

Then the functor
limB, — [ An

neN
s a K-equivalence.

Sketch: Write B = mn B, and write m,: B — A,,. Consider the inclusions ¢, : A, — B, given by
compatible functors A,, — By, < Bj. Write ¢: [[,, An — B.
Then mo ¢ =1id of [],, An.

Claim. [ton] = [id] in Ko(Fun(B,B)).
Consider the functor
VYn: B— B =B,
where each B,, < B (so that the right orthogonal makes sense) and we put B_; = 0. Now observe:

consider the exact sequence
@1/1" — @¢n—»L07r,
n>1 n>0
where the first map is induced by the maps 9,11 — 1,,. We compute
id] = (o] = [P va] — [ ten] = Lo .
n>0 n>1

O

Corollary 3.7. Let By « By < By < --- be an inverse system in CatP°™ such that Bni1 — B,
has a fully faithful right adjoint. Then

n



10 ALEXANDER EFIMOV

Proof. Apply the above to hﬂn B,, with respect to the right adjoints. Denote A,, = Ker(B,,+1 — B).

Then
Ko (1im B,) = Ko ([ An) = T Ko(An) = lim Ko(By),

Corollary 3.8. Ky(Fun(A“, AY)) = End(@Q Z),

Proof. Choose a bijection N =5 Q, n + a,. Let C, C A“ be a stable subcategory generated by the
representable presheaves hq,, ..., hq,. Then

Ko(Fun(A“, AY)) = @Ko(Fun(Cn7A“)) ~ lim Ko (Fun([n], A“))

n

Jim
- LmﬁKo(Aw) - End<@2),

n
n =0 Q

Ko(A*) = €D Ko(Sp*) = D Z.
Q Q

since we know that

]

Recall the functor G: BY — A“ from the above. Then (G o F*)(h,) = hq, and this finally implies
G o F¥) = [,

Theorem 3.9. (1) Let F,G: CatP™ — & be accessible localizing invariants, let ¢: F — G be
map, and suppose that € has a non-degenerate t-structure. Suppose moreover that the induced
map mop: moF — oG on connected components is an isomorphism.

Then p: F = G is an isomorphism.
(2) K: CatP™t — Sp commutes with small products.

Proof. For the proof that (1) = (2) we need to show: for any set I, the map
K(H c) %I %)
I I

is an isomorphism. Observe that the source and target are localizing invariants in C and myy is an
isomorphism.

It remains to prove (1). The fact that mop is an isomorphism implies that 7, ¢ is an isomorphism
for n < 0. Now, consider the resolution

0 — C — Ind(C*') — Calk,, (C) —» 0
and proceed by induction. O

We also deduce from the proof that for all dualizable categories D, m, 5™ is an isomorphism for
n < —1. Then we use

0 — Shvso(R; Sp) — Shvso(R; Sp) —= 21 sp - 0.

An inductive argument shows that 7, is an isomorphism for all n € Z.

Corollary 3.10. For any accessible localizing invariant F: CatP*™ — & we have
Feo** (Shv(R U {oo}; Sp)) = 0.
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Proof. Observe the exact sequence

0 — Shvso(R; Sp) —% Shv(R U {oo}; Sp) % Shv<o(R; Sp),
where « is the left adjoint to jip* : Let v = R<o and write R, for R equipped with the y-topology
(UCRyisopenif U+~v=U and U C R is open). Similarly, define R_,.
Then p: R > R, o_»: R—=R_, and ¢,: RU{oc} = R,. O

Theorem 3.11. Let X be a finite CW complex and let C be a dualizable category. Let F: CatP®™t — £
be an accessible localizing invariant.
Then Ft(Shv(X;C)) = F"(C)X, where the right hand side is the X -co-groupoid.

Observe that for all finite CW complexes Y we have an isomorphism
F™(Shv(Y x [0,1];C)) = F"(Shv(Y;C)).
We get a functor G: (S")°P — & such that G(X) = F(Shv(X;C)) for any finite CW complex
X. We know G(x) = F"(C) and G(@) = 0.
We need to show that G commutes with pullbacks. Consider a cellular embedding X — Y of

finite CW complexes, and let X — Z be some continuous map of finite CW complexes. Then we
have a commutative diagram

Shv(Y Ux Z;Sp) — Shv(Y;Sp)

| |

Shv(Z;Sp) —— Shv(X; Sp)

which is a pullback square both in PrSLt and in Catgt‘“’Ll (because the right vertical map is a quotient
functor).
We deduce that F°" commutes with such pullbacks:

Lemma 3.12. Let
A—— B
C——7D

be a pullback square in Pré. Assume that A, B,C,D are dualizable, all functors are strongly continuous

and the right vertical map is a localization.
Then the left vertical map is a localization, A = B x%“al C and

Fcont (.A) — Fcont (B) XFcont(D) Fcont (C)

4. TALK 4

Let X be a locally compact Hausdorff space and let C be a presheaf with values in Catgtua”1 such

that C(@) = 0.

Theorem 4.1. We have
Ui (Shv (X5C)) = Te(X; (thee(C))"),

loc

where Uy s the universal localizing invariant. The same holds for K-theory.

Let F € Shv(X;C). Recall the restriction map resy,y: C(U) — C(V) for V. C U. Being a sheaf
requires that
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(1) F(@)=0.
(2) For open subsets U,V C X there is a pullback

FOUUV) —— resguv}U F(U)

l !

resguv,v FV) —— I”esl}}uv,Um/ FUNV)

in C(UUYV).
(3) FU) = lim, _,
Proposition 4.2. Let F € Shv(X;C). The following are equivalent:

(i) F is compact.

(ii) Supp(F) is compact and F can be covered by U such that ]-"U ~ Py, where P € C(U)“.

Efimov:sheaf-3
res(t F(V).

Proof. The implication (ii) = (i) is an easy exercise.
Let us prove (i) = (ii):
Step 1: Suppose that F,, = 0 in C,. Then there exists U > z such that ]-"U = 0. Indeed, we have
F= lim vy F.
Vex~{z}
Hence, F is a summand of some jy1ji,F and thus ‘F‘X\V =0.

Ezercise: (—)*: Catd" — CatP™ commutes with filtered colimits.

Step 2: Suppose F,; # 0. Then F, € C;,. It follows that there exists U > x such that F, lifts to
PecU)~. Shrinking U if necessary, we get a map ¢: Py — F. Then, choosing z € V€ U, we get
Cone(go)’7 € ShV(V;Q|v)“’. Hence, Cone(g@)fw = 0 for some W > z.

Step 3: F = lim, . juijgF implies that Supp(F) is compact.

Remark 4.3. Some proofs use the following fact: There exists a conservative continuous functor
Mot'°¢ — Sp. This follows from rigidity (hence dualizability) of Mot'°°.

Note that
Shv(X;C) <  PSh®“™(X;C)

J I

Shvi(X;C) < PSh™(X;0),
where PSh®™ denotes those presheaves which satisfy and PSh{®™ denotes those presheaves
defined on compact subsets such that F(Y) = @Z@Y reszy F(Z).
Note that for compact Y C X we have C(Y) = ligUDY C(U).
Exercise: We have that

Uoe(PSEE™(X;0) = @ Ue(C(V)).

VCX
open, compact

Hint: use the semi-orthogonal decomposition PShi(X;C) = (C(Y),Y C X compact) and
PSh(X;C)/PSh™ (X;C) = (C(Y),Y C X compact but not open)
Assuming that X is compact, we have Shv(X;C) ~ Shv(X U {o0}; 5C).
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Step 4: Approximate Shvi(X;C) by finite limits of PShi(Y;C). If X =Y; U---UY,, denoting
Yr = e, Yi for I # &, then we have the approximation

@ PSh?(?nt (YI7 Q|Y )
I#£2 !

“Categorify Cech cohomology” a
4.1. The internal Hom in Catd".

Theorem 4.4. Let C be a rigid symmetric monoidal category (in particular, C is dualizable). Let A
and B be dualizable categories over C.

(1) Suppose that A is proper and wi-compact.
Then for all uncountable regular cardinals k, we have

Z/{l(i)ocnt (mdual (./4, B)) = Hoima/{loc,n (-A) ) ulOC,K, (B))

in Motg’;.
(2) If additionally C is compactly generated, then
ulcoocnt (@gual (-/47 B)) = m(uloc(A)>uloc(B)>
in Motg®.

Definition 4.5. Recall that A is proper if the evaluation functor A®¢ AV — C is strongly continuous.
We say that A is wi-compact if coev(l) € (A ®c AY)“.

Corollary 4.6. Let R be a noetherian commutative ring and I C R an ideal. Then

K™ (Nuc(Ry)) == lim K(R/I").

Corollary 4.7. If X is a C°-manifold and countable at co, then
K" (coShv(X;C)) =~ HPM(X; K°"(C)).

Suppose that C = Mod(k), where k is an E-ring. Let R, S be E;-algebras over k. Suppose that
A =Mod(R) and B = Mod(S).
Then A is proper if and only if R € Perf(k).

Question 4.8. What is Hom{"* (Mod(R), Mod(S))?

We use the adjunction

dual _ncl o o
Cat,"™ ——— Pry .,

Ind(&“r) +— €.
Corollary 4.9. We have
Hom{"(Mod(R), Mod(S)) = Ker®™* (Ind(BiMod(R, S)“*) — Ind(Rep(R, Calk., (5)))),
noting that BiMod(R, S) = Rep(R, Mod(S)“1).
Crucial Fact 4.10. The functor
Rep, (R, Mod(S)“*) — Rep, (R, Calky, (S))

is a homological epi.
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Recall: to show that a functor D — & in CatP®™" is a homological epi, we need that for all z,y € £
it holds that
Home (F(—),y) ®p Home (v, F'(—)) — Home (2, y).

The left hand side is considered as an object of Ind(D) ®; Ind(D°P) <% Mod (k).

Efimov:fact
Fact 4.11. (1) Suppose that D is a compactly assembled presentable category (or least assume
that strong (AB5) and (AB6) for countable products hold). Let I be a directed poset and
F: N° x I — D be a functor.
Then
lim  lim F(n,o(m)) = limlim F(n, ),
¢: N=>In<m n o1
where (n < m) € N°P x N.
(2) Let D be as above, and let I, J be directed posets. Let F': NP x N°P x [ x J — D. Assume
that the following conditions are satisfied:
() Yim, iy i, li, P87, 7) = im, i, gl P .7,
(ii) Same with n <> k and i > j.
Then we have that
li li im lim F(n, k, o(m), (1)) = limlim lim F(n, n, i, j
Wﬁw:ﬁm%m% (n, k, p(m), (1)) (ngg ( 7)
Exercise 4.12. (a) Prove a version of Fact [£.11] (1), where N°P x [ is replaced with a cocartesian

fibration £ — N°P_ with directed fibers and cofinal transition maps.
(b) Let I,J,D and F be as in Fact (2), but without assumptions (i) and (ii). Then we have

g lm o lmo F(n,ke(m), ¢(0) > limlimlmlin F(n, ki, ),
¢: N=Iy: No>Jn<m<k<l n i k J
where (n,m, k,l) € N°P x N x N°P x N.

5. TALK 5: INTERNAL HOMS AND INVERSE LIMITS IN Catdual

Theorem 5.1. Let C be a rigid base category. Let A, B be dualizable categories over C such that A
is proper and wi-compact in Catgual.

Then Horndcual(./él7 —) preserves short exact sequences, i.e., A is internally projective.
Corollary 5.2. For a reqular cardinal k > w1 and A as above, we have

uloc,m(mdual(Aa B)) = M(U10C7K(A), MIOC,H(B))'

Example 5.3 (Non-example). Let C = Sp; then A = er[(),l] Sp is not wi-compact.

Let C = Mod(k) and A = Mod(R), where R € Perf(k). Let B = Mod(S).
Key Statement 5.4. The functor F': Rep(R, Mod(S)“!) — Rep(R, Calk,, (S)) is a homological
epi.

Proof. Let M,N € D = BiMod(R, S)“* = Rep(R,Mod(S)¥*) and put £ = Rep(R, Calk,, (5)). We
need to show that

Home (F(-), F(N)) ®p Home (F(M), F(~)) = Home (F (M), F(N))
is an isomorphism and that F' is essentially surjective up to retracts. Now, reduces to

THC*(R/k, Homg(—, S)®sN)®@pTHC* (R/k, Homg (M, §)®5—)~>THC* (R/k, Homg (M, $)2sN) ||
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Replace Homg(M, S) by an abstract L € BiMod(S, R). We thus want to show that
THC*(R/k,Homg(—,S) ®s N) ®p THC*(R/k,L ®5 —) — THC*(R/k,L ®g N)

is an isomorphism. Choose an approximation N = li_I)nj N; and L = ligqi L;, where L;, N; are

compact bimodules. Furthermore, choose an approximation R ~ hgqn X, in BiMod(R, R) with

X, € Perf(R ® R°P).
Apply Fact (1) and then Fact (2) to the functor

NP x NP x I x J — Mod(k),
(n, k,i,j) — Hompg rov (Xn ®r Xk, L; ® NJ)
]

Remark 5.5. The dual (—)V: Cat& — Catd" is a (covariant!) equivalence; it takes F': C — D
to FV:CY — DV.

The proof shows the following: for a map S — S’ of E;-algebras, we have a commutative square
Hom™*(Mod(R), Mod(S"))Y —— Hom®"*(Mod(R), Mod(S))¥
Ind(Rep(R, h\/LIod(S’)wl)(’p) — Ind(Rep(R, l\\god(S)“l)OP).
The upper right category is generated by objects of the form THC*(R/k, L ®g —).
Corollary 5.6. If S — S is a homological epi, then
Hom ' (Mod(R), Mod(S)) — Hom®* (Mod(R), Mod(S"))
s a quotient functor.

Example 5.7. Consider a noetherian commutative ring R with an ideal I C R. We work over R.
Define

Nuc(Rz) == Hom % (D tors(R), D(R)) = Drtors(R)™.
If I =(f1,...,fn), then Dytors(R) = Mod(A), where A = Endgr(Kos(R, fi1,..., fn))-
Remark 5.8. Let C be a locally rigid category. Consider its one-point compactification Cy C Ind(C),

which is generated under colimits by Y'(C) and Y(lc) For example, Dy iors(R)+ = D(R7).
Then C"¢ = Hom¢"(C,Cy).

Consider the category
Hom{"* (Ind(A), Ind(C)),
where A is proper and w;-compact in Catperf Write A = lim B,,, where each B, is a finitely
presented (= compact) category over k.

Proposition 5.9. We have that
Hom*"**!(Ind(A), Ind(C)) = lim®"**(Ind(Fun(B,,C))).
As a general fact, we have

L_dualD Kerdual(lnd(L D) — Ind(lim, Calk™" (D;))).
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Exercise 5.10. Ringg_ — Catd™ R+ Mod(R) is a sheaf in the descendable topology (in the
sense of Akhil Mathew).

Theorem 5.11. We have that
K (Iim ™ Ind (Fun(B,,,C))) = lim K (Fun(B,,,C)).

Proposition 5.12. For all n, there exists m > n such that B, — B,, is trace class in Catzerf.

Together with the theorem, the proposition implies that
Hom(Ujoe(A), Uioc(B)) = KK (A,C) = @K(Fun(Bn,C)).

Example 5.13. Let k = Z[z] and A = Perf, ors(Z[x]), which is proper over Z[z]. Then A =
hﬂ coh( [ ]/I )

Exercise 5.14. The map
coh( [ ]/CE ) Coh(Z[x}/x%l)

tporf

is trace class in Ca (2]’ and

“lﬂ”Dcoh( [ ]/I ) ﬂ

where B, is finitely presented.
Assuming I = (f) C R, we get
K" (Nuc(R7)) = KK 4 (Perf, cors(Z[2]), Perf(R))
= @K(Fun( b n(Z[z]/z™), Perf(R)) =~ lglK(R/f”)
n n
Theorem 5.15. Let Dy < Ds < --- be an inverse system in CatP*™ such that
(x) fm Dt — lim Calky, (Dy) is a homological ep.
Then we have
cont (1;.,,dual ~os
K ann Ind(D,,)) — ILHH K(D,).
Idea. Categorify the fiber sequence

(D) = [[K®Dn) = ] E(Dn)

Step 1: Prove
K (™™ nd(D,.)) = QK (im_ Calk,, (D,)).
Step 2: Use

K (lm®”'™ Calk,,, (D (H Calk,, (D )
= [[ K (Calk,, (Dn)).

n

Step 3: Prove that the functor

@Z})Iax Il’ld(Dn)wl /hglzplaXDn N yglzplax Calkwl (Dn)

is fully faithful.
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It remains to show:
K-equiv.

@jﬁ‘“pn\@g’l“ Ind(D,,)“! / lim Ind(D,,)* M [T, Calk,, (D).

loc

6. TALK 6: RIGIDITY OF Mot

Theorem 6.1. Let C be a rigid symmetric monoidal category. Then Motlcoc, i.e., the target of the

universal localizing invariant U : Catgerf — MotlcoC commuting with filtered colimits, is Tigid.

loc

Corollary 6.2. The category Motz ° is dualizable (but in general not compactly generated).

Expectation: If C # 0, then Mo‘ulcOC is not compactly generated. This is known to hold for
C = D(Qz]).

Consider the case C = Mod(k) for some E-ring k. Recall the following definitions:

Definition 6.3 (Kontsevich). Let D be a dualizable k-linear category.

(1) D is called proper over k if ev: D ®; DV — Mod(k) is strongly continuous.
(2) D is called smooth over k if coev: Mod(k) — D ®j, DV is strongly continuous, i.e., coev(k)
is compact.

A category A € Catl,zerf is called smooth or proper if Ind(A) is.
Note that Catl,ze’nc is compactly generated.

Proposition 6.4 (TV). If A is a finitely presented (compact) category, then A is smooth.
If A is smooth and proper, then A is finitely presented.

Let A = Perf(A), where A is a finitely presented object of Algg, (Mod(k)). Then for all ind-systems
(M;); in BiMod(A, A), we have

Mapginod(a,a) (a/k, lim M;) >~ Modaig, (voaay) (4, A @ lim M;)
% A
= hﬂ MapAlg/A (Aa Ao MZ)

= lim Mappintod(a,4) (a/ks Mi)-

2

This implies Q4 /5, = fib(A® A — A) € Perf(A® A°P).

Definition 6.5. A k-linear category B € Catierf is called nuclear if for all finitely presented
categories A the natural map
Fung (A, Perf(k)) @ B = Fung (A, B)
is an isomorphism.
Exercise 6.6. If A is smooth and B is proper, then
Funy (A, Perf(k)) @5 B = Fung (A, B).
Corollary 6.7. Any proper category is nuclear.

loc

To prove rigidity of Mot;’®, we need:
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(i) Unoe(k) is compactﬂ In fact, one can show Map(Uioc(k),Uioc(A)) = K(A).
(ii) The category Mot)° is generated by objects of the form h_H}l(.%‘l — 9 — - -+ ) such that the
transition maps x, — x,41 are trace class.
Suppose that B is a nuclear object of (Catr,;erf)‘”l. Then B ~ li_n>n(./41 — As — -+ ), where each
A, is finitely presented and the transition maps A,, — A1 are trace class. Moreover,

Z/{loc (B) = 11&1 uloc (An)v

loc

and the transition maps Uioe(An) = Uioc(An+1) are trace class. We only need to show that Mot
is generated under colimits by Ujoe(B), where B is nuclear and wj-compact.

Lemma 6.8. If A is smooth (e.g., finitely presented) and B € Catierf, then

Funy (A, Perf(k)) ® B Funy (A, B)

\ /

A°P @ B

18 fully faithful.
Proof. This is an exercise. O

Corollary 6.9. The class of nuclear objects of Catzcrf is closed under:

(a) filtered colimits;
(b) semi-orthogonal decompositions;
(¢c) taking full subcategories; indeed, if B' C B, where B is nuclear, then

0

Funy (A, Perf(k)) ® B' —— Funy

—

A B)

Funy (A, Perf(k)) ®, B ——=—— Funy (A, B)

=

Fung (A, Perf(k)) ® (B/B') —— Fung(A,B/B')

0
and this formally implies that B’ is nuclear.

Suppose C = Perf(R). Define a k-enriched category B with ob(5) = N and

R, ifn<m,
Homp(n,m) =<k, ifn=m,
0, ifn>m.

2This is due to BGT.
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Then we have an exact sequence
0 — Ker — Fung(B°?, Mod(k))“ — Perf(R) — 0,

where Ker is generated by Cone(h,, — hs,,,), and the right map is induced by h,, — R. (This
should be “familiar” to symplectic geometers.)

By the above, the category Funy (B°P, Mod(k))“ is nuclear (it has a countable semi-orthogonal
decomposition into Perf(k)). Hence, also Ker is nuclear.

Let C be a rigid category. We want a good notion of nuclearity with the required properties (in
particular, full subcategories of nuclear categories should be nuclear).

Fact 6.10. The category Catb™ ~ Cat® is compactly assembled, and the functor
Y: Catléerlc — Ind(Catgerf)
is symmetric monoidal.

Definition 6.11. A category B is called nuclear if for any A € (Ca‘cgerf)‘*’1 such that YV (A) =
lim(A; — Az — --+), the natura Imap

“Jim” Home (A, C) ® B = * lim” Homg (A, B)

n

is an isomorphim.

The most difficult part is proving that, if B is nuclear, then any subcategory B’ C B is nuclear
(where “subcategory” means “generated by relatively (to C) compact objects”).

We need to show the following: for any small C-enriched category B and any compact map R — S
in Algg (C), consider the commutative square

Rep(R,C¥) ® B ———— Rep(R, B)

[T [

Rep(S,C¥) ® B —z— Im(G) € Rep(S, B).

We want to construct a functor Im(G) — Rep(R,C*) ® B such that all triangles commute.
This reduces to proving that there exists a map of E;-coalgebras in Ind(BiMod(S, S)):

(*) Y(S@r S) = Y(S)
such that after applying li_n}, we get the canonical map S®gr S — S as E;-coalgebras in BiMod(S, S).
The map (*) reduces to a version of an argument of Toén—Vaquié for “ lig”(s @ M;).

Theorem 6.12. Let R be a connective Eq-ring. Then
Homygopor (Uioe(S[z]), Uioe(R)) = TR(R) = Qlim K (Rz~"]/z™").

Idea. Prove
Uoe(S[2]) = S lhoc (Perf (oo (P3))
and
Perf . (PS) = lim Ay, where A,, = Perf(Cobar(S[z~*]/z~™)*).
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It then follows that

Hom (X Uioc (Perf o0} (PL), Uioc(R))) = Q@k(Fun(An,uloc(R[fl] /7).
Next, we use the following
Lemma 6.13. Suppose B = @n B,, where the transition maps B, — Bynt1 are trace class. Then

Mapyoiioc (Uioc(B), Uroc(C)) = lim K (Fun(B,, C))
= l%n K (Fun(B,,Sp”) ® C).

O

Theorem 6.14. Consider a smooth scheme X over k, and suppose that there exists a smooth
compactification X C X. Then

KK"(Perf(X), Perf(k)) = fib(K(X) — K<(X — ) ~ fib(K(X) — K"(X..)).

(X~X)
Theorem 6.15. Suppose that k is a reqular noetherian ring and X is a proper scheme over k. Then
KK" (Perf(X), Perf(k)) = G(X) = K(Coh X).
Consider the following functors:
Mot'*eve 25 Mot!o® 25 Mot = Mod(|thoo(A))).
Theorem 6.16. For a connective E1-ring R we have
Map(ji1,Uroc(R)) = TC(R).

Suppose k is a Q-algebra. We have a commutative diagram

Mo tloc HC™ MOd [[ H)
Hck) T
Nuc(k[[u]]),
where degu = 2.
Exercise 6.17. For k = Q[z], we have

HC ™ (Qlr, 2~1)/Qlx)) = O (Y {lul < |e" # 0}).

n>0
where the right hand side is not generated by compact objects of Nuc(Q[z][[u]]).

Corollary 6.18. Mot(g[cm} is not compactly generated.
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