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1. Talk 1

Consider a qcqs scheme X. There are two categories associated with X: the category Perf(X) =
Dqc(X)ω of perfect complexes and Dqc(X) = Ind(Perf(X)).

There are two invariants we might consider:

K(X) = K(Perf(X))

HH(X) = HH(Perf(X)),

K(Dqc(X)) = 0.

The idea is to understand K(X) in terms of Dqc(X).

1.1. Compactly assembled categories. Compactly assembled categories were first developed by
Lurie, Joyal, Johnstone etc.

If C = Ind(A), then for all x ∈ C we have an ind-system (xi)i with xi ∈ Cω such that x = lim−→
i

xi.

Observe that the assignment x 7→ “ lim−→ ”
i
xi is gives a well-defined functor

Ŷ : C → Ind(C),

which is left adjoint to colim: Ind(C)→ C.

Definition 1.1. Let C be an accessible ∞-category with filtered colimits. Then C is compactly
assembled if there exists Ŷ : C → Ind(C) which is left adjoint to colim.

Example 1.2. (1) Ind(A) is compactly assembled.
(2) (R ∪ {+∞},≤) is compactly assembled with Ŷ (a) = “ lim−→ ”

b<a
b.
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(3) Let X be a locally compact Hausdorff space. Then Open(X) is compactly assembled with
Ŷ (U) = “ lim−→ ”

V⋐U
V . Also, K(X)op is compactly assembled with Ŷ (Z) = “ lim−→ ”

Z′⋑Z
Z ′.

(4) Exercise: Let Seminorm1 be the category of R-vector spaces with a seminorm ∥·∥ and
contractible maps (i.e., ∥f(x)∥ ≤ ∥x∥). If dimV <∞ and (V, ∥·∥) is normed, then

Ŷ (V, ∥·∥) = “ lim−→ ”
c>1

(V, c∥·∥)

and Ŷ (R, 0) = “ lim−→ ”
ε>0

(R, ε|·|).
(5) Shv(X, C) is compactly assembled, where X is a locally compact Hausdorff space and C is a

presheaf of dualizable categories.
(6) The categories Nuc(RÎ) and Ñuc(RÎ) of nuclear modules are compactly assembled, and

Nuc(RÎ)
ω = Perf(RÎ).

(7) Let R be an associative ring and J ⊆ R an ideal which is flat as a right module and satisfying
J2 = J . Put

Moda(R) = Mod(R)/Mod(R/J)

Then D(Moda(R)) is compactly assembled.

We introduce the following notation:

• Catidem is the category of small idempotent complete categories,
• Catperf is the category of small idempotent complete stable categories, and
• CompAss is the category of compactly assembled categories, where the 1-morphisms are the

strongly continuous functors, i.e., F : C → D such that F commutes with filtered colimits
and the diagram

C D

Ind(C) Ind(D).
Ŷ

F

Ŷ

Ind(F )

• Denote Catdualst ⊆ CompAss the subcaetgory of compactly assembled stable categories with
strongly continuous exact functors. Note that both Catdualst and CompAss are cocomplete.

Proposition 1.3 (Lurie). (1) Catidem is generated under colimits by [1], which is compact.
(2) Catperf is generated under colimits by Spω, which is compact.

Sketch. Let F : C → D such that Fun([1], C) ∼−→ Fun([1],D). Then F is an equivalence. □
Efimov:Urysohn

Theorem 1.4 (Urysohn’s lemma). (1) CompAss is generated under colimits by R∪{∞}, which
is ω1-compact.

(2) Catdualst is generated under colimits by ShvR×R≥0
(R; Sp).

In particular, CompAss and Catdualst are ω1-presentable.1

Remark 1.5. The usual Urysohn’s lemma for compact Hausdorff spaces says that CompHausop is
generated under colimits by [0, 1], which is ω1-compact.

1The last statement ist due to Ramzi.
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Fact 1.6. We have an equivalence CompAss
∼−→Catdual, where Catdual is the category of dualizable

objects in PrL whose 1-morphisms are those functors F : C → D for which the right adjoint FR is
colimit-preserving. The equivalence takes

Ind(A)↔ PSh(A; Ani),

C 7→
{
F : Cop → Ani

∣∣∣∣ F commutes with
cofiltered limits

}
,{

G : D∨ → Ani

∣∣∣∣ G is colimit preserving
and left exact

}
← [ D.

Why is CompAss generated by R ∪ {∞}? It suffices to show that if F : C → D is strongly
continuous such that

Funstr.cont.(R ∪ {∞}, C)≃ ∼−→ Funstr.cont.(R ∪ {∞},D)≃,

then F is an equivalence.

Proposition 1.7. Any compactly assembled category is ω1-accessible.

Sketch. We have Ŷ (x) = “ lim−→ ”
i∈I

xi, where I is a directed poset. Then x ≃ lim−→
f : N→I

lim−→
n

xf(n), where

xf(n) is ω1-compact. □

Definition 1.8. In a compactly assembled category, a map f : x→ y is compact if it factors as

Y (x) Y (y)

Ŷ (y).

Y (f)

Lemma 1.9. If C is compactly assembled, and f : x→ y in C is compact, then f = g ◦ h such that
g, h are compact.

Sketch. Write Ŷ (y) = “ lim−→ ” “ lim−→ ”
i
yi. Then Ŷ (y) = lim−→

i

Ŷ (yi), so we have a factorization

x y

yi,

f

g h

where g and h are compact. □

Lemma 1.10. The functor

Funstr.cont.(R ∪ {∞}, C)→ Cω1 ,

G 7→ G(∞)

is essentially surjective.
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Proof. Let x ∈ Cω1 . Then Ŷ (x) = “ lim−→ ”(x0 → x1 → · · · ) such that each xn → xn+1 is compact.
Define G0 : Z ∪ {∞} → C by

G(m) =


x, if h =∞,
xm, if m ≥ 0,
0, if m < 0.

Inductively, define compatible Gn : 1
2nZ ∪ {∞} → C such that all transition maps are compact. We

obtain G : Z[1/2] ∪ {∞} → C and put

G′ : Z[1/2] ∪ {∞} → C, G′(r) = lim−→
b<r

G(b).

Take a left Kan extension of G′ to R ∪ {∞} to get a strongly continuous functor H : R ∪ {∞} → C
such that H(∞) = x. □

For F as above, we already know that Fω1 : Cω1 → Dω1 is essentially surjective. In order to finish
the proof of Theorem 1.4.(1), we need to show that it is fully faithful. Consider the pullback diagram

lim←−
a>0

MapC(G(0), H(a)) Funstr.cont.(R ∪ {∞}, C)≃

∗ Funstr.cont.(R≤0, C)≃ × Funstr.cont.(R>0 ∪ {∞}, C)≃.
(G,H)

It follows that lim←−
a>0

MapC(G(0), H(a))
∼−→ lim←−

a>0

MapD(F (G(0)), F (H(a))).

Given strongly continuous functors G,H : R ∪ {∞} → C, we get

MapC(G(∞), H(∞)) = lim←−
a<∞

lim−→
b<∞

MapC(G(a), H(b))

= lim←−
a<∞

lim−→
b<∞

lim←−
c>b

MapC(G(a), H(c))

∼−→ lim←−
a<∞

lim−→
b<∞

lim←−
c>b

MapD(F (G(a)), F (H(c)))

∼−→ · · · ∼−→MapD(F (G(∞)), F (H(∞))).

Hence, Fω1 is fully faithful.

The functor ι : Catdualst → CompAss is conservative and commutes with filtered colimits. It has a
left adjoint

Stabcont : CompAss→ Catdualst ,

C 7→ {F : Cop → Sp |F commutes with filtered colmilits} .

It follows that Stabcont(R ∪ {∞}) = ShvR×R≥0
(R,Sp) generates Catdualst

Proposition 1.11. For a sheaf F ∈ Shv(R,Sp), the following are equivalent:
(1) The singular support (microsupport) SS(F) is a subset of R× R≥0.
(2) For all a < b, F((−∞, b)) ∼−→F((a, b)).
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Corollary 1.12. We have equivalences

ShvR×R≥0
(R,Sp) ≃

{
F : (R≤)

op → Sp

∣∣∣∣∣∀a ∈ R, F (a) ∼−→ lim←−
b<a

F (b)

}
≃ Stabcont(R ∪ {∞}).

2. Talk 2

Definition 2.1. Let C be a presentable stable category. Then C is called flat if C ⊗ − : PrLst → PrLst
preserves fully faithful functors.

Question: Is every C ∈ PrLst flat?
Efimov:flat

Theorem 2.2. C is flat if and only if C is dualizable.

Proof. If C is dualizable, then C is obviously flat, since C ⊗ − = FunL(C∨,−). The other direction
will be proved below. □

Notation. Let Praccst be the (∞, 2)-category of presentable stable categories and accessible exact
functors.

Proposition 2.3. (a) For any C ∈ PrLst, there exists a natural oplax 2-functor C ⊗ − : Praccst →
Praccst (meaning that there are 2-morphisms C ⊗ (F ◦G)→ (C ⊗ F ) ◦ (C ⊗G) which need not
be invertible) which extends the usual 2-functor C ⊗ − : PrLst → PrLst.

(b) If C is flat, then C ⊗ − is an honest 2-functor.

Assume that C is κ-presentable and F : D → E is an accessible functor. Then

C ⊗ F : C ⊗ D ≃ Funκ-lex((Cκ)op,D) F◦−−−−→ Fun((Cκ)op, E)→ Funκ-lex((Cκ)op, E) ∼= C ⊗ E ,

where the second map is given by the left adjoint to the inclusion.

Observation: For presentable stable D, E , we have an equivalence of categories

Funacc(D, E) ≃ Corr(D, E) =
{
(T , i0, i1)

∣∣∣∣ i0 : D → T and i1 : E → T are fully faithful
continuous, and T = ⟨i1(E), i0(D)⟩

}
iR1 ◦ i0 ← [ (T , i0, i1),

F 7→ E ⊕F D = {(x ∈ E , y ∈ D, x→ F (y))} the oplax limit.

We obtain a functor

C ⊗ − : Corr(D, E)→ Corr(C ⊗ D, C ⊗ E),
(T , i0, i1) 7→ (C ⊗ T , C ⊗ i0, C ⊗ i1).

We want to understand the composition

Corr(D1,D2)× Corr(D0,D1)→ Corr(D0,D2),

(T12, T01) 7→ T02 ⊆ T012 = T01 ⊔D1
T12,

where T02 is generated by the images of D0 and D2.
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Note that
(C ⊗ T01)

⊔
C⊗D1

(C ⊗ T12) C ⊗ (T01 ⊔D1
T12)

C ⊗ T02 (C ⊗ T01) ◦ (C ⊗ T12).

∼

The bottom map need not be an equivalence in general, because C⊗T02 → C⊗T012 is not fully faithful
in general. But if C is flat, then it is fully faithful, hence we obtain the functor C ⊗− : Praccst → Praccst .

We have a fibration Corr→ ∆ given by

Corrn =
⊔

(D0,...,Dn)

Corr(D0,D1, . . . ,Dn),

Corr(D0,D1, . . . ,Dn) =

(T , i0, . . . , in)

∣∣∣∣∣∣∣∣
ik : Dk → T are fully faithful, continuous
T = ⟨in(Dn), . . . , i0(D0)⟩
If Tk,k+1 ⊂ T is generated by Dk,Dk+1, then
T ≃ T01 ⊔D1 T12 ⊔D2 · · · ⊔Dn Tn−1,n

 .

We have a functor C ⊗− : Corr(D0,D1, . . . ,Dn)→ Corr(C ⊗D0, . . . , C ⊗Dn) and hence we get a
map

C ⊗ − : Corr→ Corr

of fibrations over ∆.

Proof of Theorem 2.2. We now prove that if C is flat, then C is dualizable. Recall that C is dualizable
if and only if (AB6) holds in C: that is, for all directed posets Ji, i ∈ I, and functors Ji → C, ji 7→ xji ,
then the map

lim−→
(ji)i∈

∏
i Ji

∏
i

xji
∼−→

∏
i

lim−→
ji

xji .

We have a commutative square

(1)
{Efimov:AB6}{Efimov:AB6}

∏
i Fun(Ji, C)

∏
i C

Fun(
∏
i Ji, C) C

T=
∏

i colim

W=colim

U V=diag

where U is the left Kan extension. Then (AB6) means that the dual Beck–Chevalley condition holds,
i.e., W ◦ UR ∼−→ V R ◦ T .

Observe that (1) ≃ C ⊗ (same square for Sp). Using that C ⊗− is a 2-functor on Praccst and using
(AB6) for Sp, then it follows that (AB6) holds for C. □

Suppose we have a short exact sequence

0→ Ind(A) F−→ C G−→ Ind(B)→ 0

with F and G strongly continuous.
Question: Is it true that C is dualizable?
Consider the sequence of adjunctions G ⊣ GR ⊣ GRR. We have

C = ⟨GR(Ind(B)), F (Ind(A))⟩ ≃ Ind(B)⊕Φ Ind(A),
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where Φ := GRR ◦ F is the gluing datum, imposing that HomC(x, y) = HomInd(B)(x,Φ(y)) for any
x ∈ GR(Ind(B)) and y ∈ F (Ind(A)).

Observe (almost tautologically) that

Funacc(Ind(A), Ind(B)) = Fun(B,Pro(Ind(A)))op

Φ 7→ Ψ.
Efimov:Tate

Proposition 2.4. With the above notation, the following are equivalent:
(1) C is dualizable.
(2) C is compactly generated.
(3) Im(Ψ) ⊆ Tate(A), the idempotent-complete stable subcategory of Pro(Ind(A)) generated by

Pro(A) and Ind(A).

Corollary 2.5. We have

Ext1(B,A) = {0→ A→ D → B → 0}
≃ Fun(B,Tate(A))≃.

Proof of Proposition 2.4. We have A ⊆ Cω. So if C is dualizable, then

(C/ Ind(A))ω = (Cω/A)idem,
hence for all x ∈ (C/ Ind(A))ω, there exists y ∈ Cω such that y 7→ x⊕ x[1]. We deduce (1)⇐⇒ (2).

For the equivalence (2)⇐⇒ (3) we use that for x ∈ B the following are equivalent:
(i) There exists a lift y ∈ Cω of x⊕ x[1].
(ii) There is a fiber/cofiber sequence U → Ψ(x) ⊕ Ψ(x)[1] → V such that U ∈ Pro(A) and

V ∈ Ind(A).
Equivalently, Ψ(x) ⊕ Ψ(x)[1] ∈ Tateel(A). By Thomason–Trobaugh’s theorem, this is

equivalent to Ψ(x) ∈ Tate(A).
□

Example 2.6. Consider the sequence

0→ Perfp-tors(Z)→ Perf(Z)→ Perf(Z[p−1])→ 0.

The corresponding Z-linear functor Perf(Z[p−1])→ Tate(Perfp-tors(Z)) sends Z[p−1] 7→ Qp.

Proposition 2.7. Let k be a field and let C = {(V,W ∈ D(k);φ :
⊕

N V →
⊕

NW )}. A direct
computation shows

Ψ(k) = “ lim←− ”
f : N→N

Xf , where Xf :=
⊕
n∈N

kf(n),

which is not a Tate object. We need to show that (Xf )f in Pro(Calk(k)) is not pro-constant. This
uses that for f ≤ g the transition map Xg → Xf is a split epimorphism. If (Xf )f were pro-constant,
then (Xf )f would be eventually constant, which is false since fib(Xf+1 → Xf ) =

⊕
N k.

Let R be a commutative noetherian ring. Then Neeman showed{
localizing subcategories

of D(R)

}
∼= {subsets of Spec(R)},

DS(R) = ⟨κ(p) | p ∈ S⟩ ←[ S

Neeman shows that DS(R) → D(R) is strongly continuous if and only if S is closed under
specialization.
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Theorem 2.8. The following are equivalent for S ⊆ Spec(R).
(i) DS(R) is dualizable.
(ii) S is convex, i.e., if x⇝ y ⇝ z with x, z ∈ S, then y ∈ S.
(iii) DS(R) is compactly generated.

Example 2.9. Let k be a field, take C = ⟨M |M [x−1]/yM [x−1] = 0⟩ ⊆ D(k[x, y]). Then C is not
dualizable.

Intuitively, C = QCoh(A2/{x = 0, y ̸= 0}).

3. Talk 3: Localizing invariants of categories of sheaves

Recall the category

Shv≥0(R; Sp) ≃ ShvR×R≥0
(R; Sp)

≃ Stabcont(R ∪ {∞}) =

{
F : Rop

≤ → Sp

∣∣∣∣∣∀a ∈ R, F (a) = lim−→
b<a

F (b)

}
.

Proposition 3.1. Take any accessible localizing invariant Φ: Catperf → E, where E is a stable
accessible category. Then

Φcont(Shv≥0(R; Sp)) = 0.

Applications 3.2. (a) K : Catperf → Sp commutes with small products.
(b) Computation of F cont(Shv(X; C)), where X is a finite CW complex and C is a dualizable

category.

Step 1: K0 commutes with small products.

Proposition 3.3 (Heller’s criterion). If T is a small triangulated category, and x, y ∈ T , then the
following are equivalent:

(i) [x] = [y] in K0(T ).
(ii) There exist z, u, v ∈ T and distinguished triangles

u→ x⊕ z → v

u→ y ⊕ z → v.

Corollary 3.4. K0(
∏
i Ti)

∼−→
∏
iK0(Ti).

Step 2: We have a short exact sequence

0→ Shv≥0(R; Sp)→ Fun(Qop
≤ ,Sp)

F−→
∏
Q

Sp→ 0,

where F is given by
F (G)a = Cone

(
lim−→
b>a

G(b)→ G(a)
)
.

Note that FR is fully faithful, i.e., F ◦ FR = id. It follows that

Shv≥0(R; Sp) ≃ FR
(∏

Q
Sp

)⊥
≃ ⊥FR

(∏
Q

Sp
)
= Ker(F ).

Note also that the categories A := Fun(Qop
≤ ,Sp) and B :=

∏
Q Sp are compactly generated.
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We need to show that Fω : Aω → Bω is a K-equivalence, i.e., there exists G : Bω → Aω such that
[Fω ◦G] = [id] in K0(Fun(Bω,Bω)) and [G ◦ Fω] = [id] in K0(Fun(Aω,Aω)).

Here, we take G : Bω =
⊕

Q Spω → Aω corresponding to (ha)a∈Q, where

ha(b) =

{
S, if b ≤ a,
0, if b > a.

With this definition, Fω ◦G = id. It remains to show [G ◦ Fω] = [id] in K0(Fun(Aω,Aω)).

Proposition 3.5. K0(Fun(Aω,Aω)) = End(
⊕

Q Z).

Step 3:

Proposition 3.6. Let C be a small idempotent-complete stable category with semi-orthogonal
decomposition

C = ⟨A0,A1, . . . ⟩,
meaning that Hom(Ai,Aj) = 0 for i > j, and the Ai generate C. Write Bn := ⟨A0, . . . ,An⟩ ⊆ C.
Then we have functors Bn+1 → Bn which are right adjoint to the inclusion. Consider the composite

lim←−
n

Bn → Bk
pk−→ Ak,

where pk is the right adjoint to the inclusion.
Then the functor

lim←−
n

Bn →
∏
n∈N
An

is a K-equivalence.

Sketch: Write B := lim←−n Bn and write πn : B → An. Consider the inclusions ιn : An → B, given by
compatible functors An → Bn ↪→Bk. Write ι :

∏
nAn → B.

Then π ◦ ι = id of
∏
nAn.

Claim. [ι ◦ π] = [id] in K0(Fun(B,B)).

Consider the functor
ψn : B → B⊥n−1 → B,

where each Bn ↪→B (so that the right orthogonal makes sense) and we put B−1 = 0. Now observe:
consider the exact sequence ⊕

n≥1

ψn →
⊕
n≥0

ψn→→ ι ◦ π,

where the first map is induced by the maps ψn+1 → ψn. We compute

[id] = [ψ0] =
[⊕
n≥0

ψn

]
−
[⊕
n≥1

ψn

]
= [ι ◦ π].

□

Corollary 3.7. Let B0 ← B1 ← B2 ← · · · be an inverse system in Catperf such that Bn+1 → Bn
has a fully faithful right adjoint. Then

K0(lim←−
n

Bn) = lim←−
n

K0(Bn).



10 ALEXANDER EFIMOV

Proof. Apply the above to lim−→n
Bn with respect to the right adjoints. Denote An = Ker(Bn+1 → B).

Then
K0

(
lim←−
n

Bn
)
≃ K0

(∏
n

An
)
=

∏
n

K0(An) = lim←−
n

K0(Bn).

□

Corollary 3.8. K0(Fun(Aω,Aω)) = End
(⊕

Q Z
)
.

Proof. Choose a bijection N ∼−→Q, n 7→ an. Let Cn ⊆ Aω be a stable subcategory generated by the
representable presheaves ha0 , . . . , han . Then

K0(Fun(Aω,Aω)) = lim←−
n

K0(Fun(Cn,Aω)) ≃ lim←−
n

K0(Fun([n],Aω))

= lim←−
n

n∏
i=0

K0(Aω) = End
(⊕

Q
Z
)
,

since we know that
K0(Aω) =

⊕
Q
K0(Sp

ω) =
⊕
Q

Z.

□

Recall the functor G : Bω → Aω from the above. Then (G ◦Fω)(ha) = ha, and this finally implies
[G ◦ Fω] = [id].

Theorem 3.9. (1) Let F,G : Catperf → E be accessible localizing invariants, let φ : F → G be
map, and suppose that E has a non-degenerate t-structure. Suppose moreover that the induced
map π0φ : π0F → π0G on connected components is an isomorphism.

Then φ : F
∼−→G is an isomorphism.

(2) K : Catperf → Sp commutes with small products.

Proof. For the proof that (1) =⇒ (2) we need to show: for any set I, the map

K
(∏
I

C
)

φ−→
∏
I

K(C)

is an isomorphism. Observe that the source and target are localizing invariants in C and π0φ is an
isomorphism.

It remains to prove (1). The fact that π0φ is an isomorphism implies that πnφ is an isomorphism
for n ≤ 0. Now, consider the resolution

0→ C → Ind(Cω1)→ Calkω1
(C)→ 0

and proceed by induction. □

We also deduce from the proof that for all dualizable categories D, πnφcont
D is an isomorphism for

n ≤ −1. Then we use

0→ Shv>0(R; Sp)→ Shv≥0(R; Sp)
Γc(−)[1]−−−−−→ Sp→ 0.

An inductive argument shows that πnφ is an isomorphism for all n ∈ Z.

Corollary 3.10. For any accessible localizing invariant F : Catperf → E we have

F cont
(
Shv(R ∪ {∞}; Sp)

)
= 0.
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Proof. Observe the exact sequence

0→ Shv≥0(R; Sp)
φ∗

γ−−→ Shv(R ∪ {∞}; Sp) α−→ Shv≤0(R; Sp),
where α is the left adjoint to j!φ∗

−γ : Let γ = R≤0 and write Rγ for R equipped with the γ-topology
(U ⊆ Rγ is open if U + γ = U and U ⊆ R is open). Similarly, define R−γ .

Then φγ : R→ Rγ , φ−γ : R→ R−γ and φγ : R ∪ {∞} → Rγ . □

Theorem 3.11. Let X be a finite CW complex and let C be a dualizable category. Let F : Catperf → E
be an accessible localizing invariant.

Then F cont(Shv(X; C)) = F cont(C)X , where the right hand side is the X-∞-groupoid.

Observe that for all finite CW complexes Y we have an isomorphism

F cont(Shv(Y × [0, 1]; C)) ∼−→ F cont(Shv(Y ; C)).
We get a functor G : (Sfin)op → E such that G(X) = F cont(Shv(X; C)) for any finite CW complex
X. We know G(∗) = F cont(C) and G(∅) = 0.

We need to show that G commutes with pullbacks. Consider a cellular embedding X ↪→ Y of
finite CW complexes, and let X → Z be some continuous map of finite CW complexes. Then we
have a commutative diagram

Shv(Y ⊔X Z; Sp) Shv(Y ; Sp)

Shv(Z; Sp) Shv(X; Sp)

which is a pullback square both in PrLst and in Catdualst (because the right vertical map is a quotient
functor).

We deduce that F cont commutes with such pullbacks:

Lemma 3.12. Let
A B

C D
be a pullback square in PrLst. Assume that A,B, C,D are dualizable, all functors are strongly continuous
and the right vertical map is a localization.

Then the left vertical map is a localization, A = B ×dual
D C and

F cont(A) = F cont(B)×F cont(D) F
cont(C).

4. Talk 4

Let X be a locally compact Hausdorff space and let C be a presheaf with values in Catdualst such
that C(∅) = 0.

Theorem 4.1. We have
Ucont
loc (Shv(X; C)) = Γc(X; (Uloc(C))♯),

where Uloc is the universal localizing invariant. The same holds for K-theory.

Let F ∈ Shv(X; C). Recall the restriction map resU,V : C(U) → C(V ) for V ⊆ U . Being a sheaf
requires that
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(1) F(∅) = 0.
(2) For open subsets U, V ⊆ X there is a pullback

F(U ∪ V ) resRU∪V,U F(U)

resRU∪V,V F(V ) resRU∪V,U∩V F(U ∩ V )

in C(U ∪ V ). Efimov:sheaf-3
(3) F(U) = lim←−V⋐U

resRU,V F(V ).

Proposition 4.2. Let F ∈ Shv(X; C). The following are equivalent:
(i) F is compact.
(ii) Supp(F) is compact and F can be covered by U such that F

∣∣
U
≃ PU , where P ∈ C(U)ω.

Proof. The implication (ii) =⇒ (i) is an easy exercise.

Let us prove (i) =⇒ (ii):
Step 1: Suppose that Fx = 0 in Cx. Then there exists U ∋ x such that F

∣∣
U
= 0. Indeed, we have

F = lim−→
V⋐X∖{x}

jV !j
∗
V F .

Hence, F is a summand of some jV !j
∗
V F and thus F

∣∣
X∖V = 0.

Exercise: (−)ω : Catdualst → Catperf commutes with filtered colimits.
Step 2: Suppose Fx ̸= 0. Then Fx ∈ Cωx . It follows that there exists U ∋ x such that Fx lifts to

P ∈ C(U)ω. Shrinking U if necessary, we get a map φ : PU → F . Then, choosing x ∈ V ⋐ U , we get
Cone(φ)

∣∣
V
∈ Shv(V ; C

∣∣
V
)ω. Hence, Cone(φ)

∣∣
W

= 0 for some W ∋ x.
Step 3: F = lim−→U⋐X

jU !j
∗
UF implies that Supp(F) is compact.

Remark 4.3. Some proofs use the following fact: There exists a conservative continuous functor
Motloc → Sp. This follows from rigidity (hence dualizability) of Motloc.

Note that
Shv(X; C) PShcont(X; C)

ShvK(X; C) PShcontK (X; C),

⊂
≃

⊂

where PShcont denotes those presheaves which satisfy (3), and PShcontK denotes those presheaves
defined on compact subsets such that F(Y ) = lim−→Z⋑Y

resZ,Y F(Z).
Note that for compact Y ⊆ X we have C(Y ) = lim−→U⊃Y C(U).
Exercise: We have that

Uloc(PShcontK (X; C)) =
⊕
V⊆X

open, compact

Uloc(C(V )).

Hint: use the semi-orthogonal decomposition PShK(X; C) = ⟨C(Y ), Y ⊂ X compact⟩ and

PShK(X; C)/PShcontK (X; C) = ⟨C(Y ), Y ⊂ X compact but not open⟩
Assuming that X is compact, we have Shv(X; C) ≃ Shv(X ∪ {∞}; j!C).
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Step 4: Approximate ShvK(X; C) by finite limits of PShK(Y ; C). If X = Y1 ⊔ · · · ⊔ Yn, denoting
YI =

⋂
i∈I Yi for I ̸= ∅, then we have the approximation

lim←−
I ̸=∅

PShcontK (YI , C
∣∣
YI
).

“Categorify Čech cohomology” □

4.1. The internal Hom in Catdualst .

Theorem 4.4. Let C be a rigid symmetric monoidal category (in particular, C is dualizable). Let A
and B be dualizable categories over C.

(1) Suppose that A is proper and ω1-compact.
Then for all uncountable regular cardinals κ, we have

Ucont
loc (Homdual(A,B)) ≃ Hom(Uloc,κ(A),Uloc,κ(B))

in MotlocC,κ.
(2) If additionally C is compactly generated, then

Ucont
loc

(
Homdual

C (A,B)
)
≃ Hom

(
Uloc(A),Uloc(B)

)
in MotlocC .

Definition 4.5. Recall that A is proper if the evaluation functorA⊗CA∨ → C is strongly continuous.
We say that A is ω1-compact if coev(1) ∈ (A⊗C A∨)ω1 .

Corollary 4.6. Let R be a noetherian commutative ring and I ⊆ R an ideal. Then

Kcont(Ñuc(RÎ)) ≃ lim←−
n

K(R/In).

Corollary 4.7. If X is a C0-manifold and countable at ∞, then

Kcont(ĉoShv(X; C)) ≃ HBM(X;Kcont(C)).

Suppose that C = Mod(k), where k is an E∞-ring. Let R,S be E1-algebras over k. Suppose that
A = Mod(R) and B = Mod(S).

Then A is proper if and only if R ∈ Perf(k).

Question 4.8. What is Homdual
k (Mod(R),Mod(S))?

We use the adjunction

Catdualk PrLk,ω1
,

Ind(Eω1) E .

incl

Corollary 4.9. We have

Homdual
k (Mod(R),Mod(S)) = Kerdual

(
Ind(BiMod(R,S)ω1)→ Ind(Rep(R,Calkω1

(S)))
)
,

noting that BiMod(R,S) = Rep(R,Mod(S)ω1).

Crucial Fact 4.10. The functor

Repk(R,Mod(S)ω1)→ Repk(R,Calkω1
(S))

is a homological epi.
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Recall: to show that a functor D → E in Catperf is a homological epi, we need that for all x, y ∈ E
it holds that

HomE(F (−), y)⊗D HomE(x, F (−))
∼−→HomE(x, y).

The left hand side is considered as an object of Ind(D)⊗k Ind(Dop)
ev−→ Mod(k).

Efimov:fact
Fact 4.11. (1) Suppose that D is a compactly assembled presentable category (or least assume

that strong (AB5) and (AB6) for countable products hold). Let I be a directed poset and
F : Nop × I → D be a functor.

Then
lim−→

φ : N→I

lim←−
n≤m

F (n, φ(m))
∼−→ lim←−

n

lim−→
i

F (n, i),

where (n ≤ m) ∈ Nop × N.
(2) Let D be as above, and let I, J be directed posets. Let F : Nop ×Nop × I × J → D. Assume

that the following conditions are satisfied:
(i) lim←−n lim−→i

lim←−k lim−→j
F (n, k, i, j)

∼−→ lim←−n lim←−k lim−→i
lim−→j

F (n, k, i, j).
(ii) Same with n↔ k and i↔ j.
Then we have that

lim−→
φ : N→I

lim−→
ψ : N→J

lim←−
n≤m

lim←−
k≤l

F (n, k, φ(m), ψ(l))
∼−→ lim←−

n

lim−→
i

lim−→
j

F (n, n, i, j)

Exercise 4.12. (a) Prove a version of Fact 4.11.(1), where Nop×I is replaced with a cocartesian
fibration E → Nop, with directed fibers and cofinal transition maps.

(b) Let I, J,D and F be as in Fact 4.11.(2), but without assumptions (i) and (ii). Then we have

lim−→
φ : N→I

lim−→
ψ : N→J

lim←−
n≤m≤k≤l

F (n, k, φ(m), ψ(l))
∼−→ lim←−

n

lim−→
i

lim←−
k

lim−→
j

F (n, k, i, j),

where (n,m, k, l) ∈ Nop × N× Nop × N.

5. Talk 5: Internal homs and inverse limits in Catdual

Theorem 5.1. Let C be a rigid base category. Let A,B be dualizable categories over C such that A
is proper and ω1-compact in CatdualC .

Then Homdual
C (A,−) preserves short exact sequences, i.e., A is internally projective.

Corollary 5.2. For a regular cardinal κ > ω1 and A as above, we have

Uloc,κ
(
Homdual(A,B)

)
= Hom

(
Uloc,κ(A),Uloc,κ(B)

)
.

Example 5.3 (Non-example). Let C = Sp; then A =
∏
x∈[0,1] Sp is not ω1-compact.

Let C = Mod(k) and A = Mod(R), where R ∈ Perf(k). Let B = Mod(S).

Key Statement 5.4. The functor F : Rep(R,Mod(S)ω1)→ Rep(R,Calkω1(S)) is a homological
epi.

Proof. Let M,N ∈ D := BiMod(R,S)ω1 ∼= Rep(R,Mod(S)ω1) and put E = Rep(R,Calkω1(S)). We
need to show that

(2)
{Efimov:key}{Efimov:key}

HomE(F (−), F (N))⊗D HomE(F (M), F (−)) ∼−→HomE(F (M), F (N))

is an isomorphism and that F is essentially surjective up to retracts. Now, (2) reduces to

THC∗(R/k,HomS(−, S)⊗SN)⊗DTHC∗(R/k,HomS(M,S)⊗S−)
∼−→THC∗(R/k,HomS(M,S)⊗SN).
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Replace HomS(M,S) by an abstract L ∈ BiMod(S,R). We thus want to show that

THC∗(R/k,HomS(−, S)⊗S N)⊗D THC∗(R/k, L⊗S −)
∼−→ THC∗(R/k, L⊗S N)

is an isomorphism. Choose an approximation N = lim−→j
Nj and L = lim−→i

Li, where Li, Nj are
compact bimodules. Furthermore, choose an approximation R ≃ lim−→n

Xn in BiMod(R,R) with
Xn ∈ Perf(R⊗Rop).

Apply Fact 4.11.(1) and then Fact 4.11.(2) to the functor

Nop × Nop × I × J → Mod(k),

(n, k, i, j) 7→ HomR⊗Rop(Xn ⊗R Xk, Li ⊗Nj).

□

Remark 5.5. The dual (−)∨ : Catdualst → Catdualst is a (covariant!) equivalence; it takes F : C → D
to F∨ : C∨ → D∨.

The proof shows the following: for a map S → S′ of E1-algebras, we have a commutative square

Homdual(Mod(R),Mod(S′))∨ Homdual(Mod(R),Mod(S))∨

Ind(Rep(R,Mod(S′)ω1)op) Ind(Rep(R,Mod(S)ω1)op).

The upper right category is generated by objects of the form THC∗(R/k, L⊗S −).

Corollary 5.6. If S → S′ is a homological epi, then

Homdual(Mod(R),Mod(S))→ Homdual(Mod(R),Mod(S′))

is a quotient functor.

Example 5.7. Consider a noetherian commutative ring R with an ideal I ⊂ R. We work over R.
Define

Ñuc(RÎ) := Homdual
R (DI-tors(R), D(R)) = DI-tors(R)

rig.

If I = (f1, . . . , fn), then DI-tors(R) = Mod(A), where A = EndR(Kos(R, f1, . . . , fn)).

Remark 5.8. Let C be a locally rigid category. Consider its one-point compactification C+ ⊂ Ind(C),
which is generated under colimits by Ŷ (C) and Ŷ (1C). For example, DI-tors(R)+ = D(RÎ).

Then Crig = Homdual
C+

(C, C+).

Consider the category
Homdual

k (Ind(A), Ind(C)),
where A is proper and ω1-compact in Catperfk . Write A = lim−→n

Bn, where each Bn is a finitely
presented (= compact) category over k.

Proposition 5.9. We have that

Homdual(Ind(A), Ind(C)) = lim←−
dual

n
(Ind(Fun(Bn, C))).

As a general fact, we have

lim←−
dual

i
Di = Kerdual

(
Ind(lim←−iD

ω1
i )→ Ind(lim←−iCalk

cont
ω1

(Di))
)
.
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Exercise 5.10. RingE∞
→ Catdualst , R 7→ Mod(R) is a sheaf in the descendable topology (in the

sense of Akhil Mathew).

Theorem 5.11. We have that

Kcont
(
lim←−

dual

n
Ind(Fun(Bn, C))

) ∼−→ lim←−nK(Fun(Bn, C)).

Proposition 5.12. For all n, there exists m > n such that Bn → Bm is trace class in Catperfk .

Together with the theorem, the proposition implies that

Hom(Uloc(A),Uloc(B)) = KK (A, C) = lim←−
n

K(Fun(Bn, C)).

Example 5.13. Let k = Z[x] and A = Perfx-tors(Z[x]), which is proper over Z[x]. Then A =
lim−→n

Db
coh(Z[x]/xn).

Exercise 5.14. The map
Db

coh(Z[x]/xn)→ Db
coh(Z[x]/x2n)

is trace class in CatperfZ[x] , and

“ lim−→ ”
n

Db
coh(Z[x]/xn)

∼−→ “ lim−→ ”
n

Bn,

where Bn is finitely presented.

Assuming I = (f) ⊂ R, we get

Kcont(Ñuc(RÎ)) = KK Z[x](Perfx-tors(Z[x]),Perf(R))
∼−→ lim←−

n

K
(
Fun(Db

coh(Z[x]/xn),Perf(R)) ≃ lim←−
n

K(R/fn).

Theorem 5.15. Let D1 ← D2 ← · · · be an inverse system in Catperf such that
(∗) lim←−nD

ω1
n → lim←−nCalkω1(Dn) is a homological epi.

Then we have
Kcont(lim←−

dual

n
Ind(Dn))

∼−→ lim←−nK(Dn).

Idea. Categorify the fiber sequence

lim←−
n

K(Dn)→
∏
n

K(Dn)→
∏
n

K(Dn).

Step 1: Prove
Kcont(lim←−

dual

n
Ind(Dn)) ∼= ΩK(lim←−nCalkω1(Dn)).

Step 2: Use

K
(
lim←−

oplax

n
Calkω1

(Dn)
) ∼= K

(∏
n

Calkω1
(Dn)

)
=

∏
n

K(Calkω1(Dn)).

Step 3: Prove that the functor

lim←−
oplax

n
Ind(Dn)ω1/lim←−

oplax

n
Dn ↪→ lim←−

oplax

n
Calkω1(Dn)

is fully faithful.
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It remains to show:

lim←−
oplax

n
Dn

∖
lim←−

oplax

n
Ind(Dn)ω1

/
lim←−n Ind(Dn)

ω1
K-equiv.−−−−−→

∏
n Calkω1(Dn).

□

6. Talk 6: Rigidity of Motloc

Theorem 6.1. Let C be a rigid symmetric monoidal category. Then MotlocC , i.e., the target of the
universal localizing invariant Uloc : CatperfC → MotlocC commuting with filtered colimits, is rigid.

Corollary 6.2. The category MotlocC is dualizable (but in general not compactly generated).

Expectation: If C ̸= 0, then MotlocC is not compactly generated. This is known to hold for
C = D(Q[x]).

Consider the case C = Mod(k) for some E∞-ring k. Recall the following definitions:

Definition 6.3 (Kontsevich). Let D be a dualizable k-linear category.
(1) D is called proper over k if ev : D ⊗k D∨ → Mod(k) is strongly continuous.
(2) D is called smooth over k if coev : Mod(k)→ D ⊗k D∨ is strongly continuous, i.e., coev(k)

is compact.
A category A ∈ Catperfk is called smooth or proper if Ind(A) is.

Note that Catperfk is compactly generated.

Proposition 6.4 (TV). If A is a finitely presented (compact) category, then A is smooth.
If A is smooth and proper, then A is finitely presented.

Let A = Perf(A), where A is a finitely presented object of AlgE1
(Mod(k)). Then for all ind-systems

(Mi)i in BiMod(A,A), we have

MapBiMod(A,A)(ΩA/k, lim−→
i

Mi) ≃ ModAlgE1 (Mod(A))(A,A⊕ lim−→
i

Mi)

≃ lim−→
i

MapAlg/A
(A,A⊕Mi)

≃ lim−→
i

MapBiMod(A,A)(ΩA/k,Mi).

This implies ΩA/k := fib(A⊗A→ A) ∈ Perf(A⊗Aop).

Definition 6.5. A k-linear category B ∈ Catperfk is called nuclear if for all finitely presented
categories A the natural map

Funk(A,Perf(k))⊗k B
∼−→ Funk(A,B)

is an isomorphism.

Exercise 6.6. If A is smooth and B is proper, then

Funk(A,Perf(k))⊗k B
∼−→ Funk(A,B).

Corollary 6.7. Any proper category is nuclear.

To prove rigidity of Motlock , we need:
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(i) Uloc(k) is compact.2 In fact, one can show Map(Uloc(k),Uloc(A)) = K(A).
(ii) The category Motlock is generated by objects of the form lim−→(x1 → x2 → · · · ) such that the

transition maps xn → xn+1 are trace class.
Suppose that B is a nuclear object of (Catperfk )ω1 . Then B ≃ lim−→(A1 → A2 → · · · ), where each

An is finitely presented and the transition maps An → An+1 are trace class. Moreover,

Uloc(B) = lim−→
n

Uloc(An),

and the transition maps Uloc(An)→ Uloc(An+1) are trace class. We only need to show that Motlock
is generated under colimits by Uloc(B), where B is nuclear and ω1-compact.

Lemma 6.8. If A is smooth (e.g., finitely presented) and B ∈ Catperfk , then

Funk(A,Perf(k))⊗k B Funk(A,B)

Aop ⊗k B

is fully faithful.

Proof. This is an exercise. □

Corollary 6.9. The class of nuclear objects of Catperfk is closed under:
(a) filtered colimits;
(b) semi-orthogonal decompositions;
(c) taking full subcategories; indeed, if B′ ⊆ B, where B is nuclear, then

0

Funk(A,Perf(k))⊗k B′ Funk(A,B′)

Funk(A,Perf(k))⊗k B Funk(A,B)

Funk(A,Perf(k))⊗k (B/B′) Funk(A,B/B′)

0

≃

and this formally implies that B′ is nuclear.

Suppose C = Perf(R). Define a k-enriched category B with ob(B) = N and

HomB(n,m) =


R, if n < m,
k, if n = m,
0, if n > m.

2This is due to BGT.
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Then we have an exact sequence

0→ Ker→ Funk(Bop,Mod(k))ω → Perf(R)→ 0,

where Ker is generated by Cone(hxn
→ hxn+1

), and the right map is induced by hxn
7→ R. (This

should be “familiar” to symplectic geometers.)
By the above, the category Funk(Bop,Mod(k))ω is nuclear (it has a countable semi-orthogonal

decomposition into Perf(k)). Hence, also Ker is nuclear.

Let C be a rigid category. We want a good notion of nuclearity with the required properties (in
particular, full subcategories of nuclear categories should be nuclear).

Fact 6.10. The category CatperfC ≃ CatcgC is compactly assembled, and the functor

Ŷ : CatperfC → Ind(CatperfC )

is symmetric monoidal.

Definition 6.11. A category B is called nuclear if for any A ∈ (CatperfC )ω1 such that Ŷ (A) =
lim−→(A1 → A2 → · · · ), the natura lmap

“ lim←− ”
n

HomC(An, C)⊗ B
∼−→ “ lim←− ”

n

HomC(An,B)

is an isomorphim.

The most difficult part is proving that, if B is nuclear, then any subcategory B′ ⊆ B is nuclear
(where “subcategory” means “generated by relatively (to C) compact objects”).

We need to show the following: for any small C-enriched category B and any compact map R→ S
in AlgE1

(C), consider the commutative square

Rep(R, Cω)⊗ B Rep(R,B)

Rep(S, Cω)⊗ B Im(G) Rep(S,B).
G

⊆

We want to construct a functor Im(G)→ Rep(R, Cω)⊗ B such that all triangles commute.
This reduces to proving that there exists a map of E1-coalgebras in Ind(BiMod(S, S)):
(∗) Y (S ⊗R S)→ Ŷ (S)

such that after applying lim−→, we get the canonical map S⊗R S → S as E1-coalgebras in BiMod(S, S).
The map (∗) reduces to a version of an argument of Toën–Vaquié for “ lim−→ ”

i

(S ⊕Mi).

Theorem 6.12. Let R be a connective E1-ring. Then

HomMotloc
(
Ũloc(S[x]),Uloc(R)

)
= TR(R) = Ω lim−→

n

K̃(R[x−1]/x−n).

Idea. Prove

Ũloc(S[x]) = Σ Ũloc(Perf{∞}(P1
S))

and

Perf{∞}(P1
S) = lim−→

n

An, where An = Perf(Cobar(S[x−1]/x−n)∗).
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It then follows that

Hom(Σ Ũloc(Perf{∞}(P1
S),Uloc(R))) = Ω lim←−

n

K̃(Fun(An,Uloc(R[x−1]/x−n))).

Next, we use the following

Lemma 6.13. Suppose B = lim−→n
Bn where the transition maps Bn → Bn+1 are trace class. Then

MapMotloc(Uloc(B),Uloc(C)) = lim←−
n

K(Fun(Bn, C))

= lim←−
n

K(Fun(Bn,Spω)⊗ C).

□

Theorem 6.14. Consider a smooth scheme X over k, and suppose that there exists a smooth
compactification X ⊂ X. Then

KKK(Perf(X),Perf(k)) = fib
(
K(X)→ Kcont(X ̂(X∖X)

)
)
≃ fib

(
K(X)→ Kcont(X̂∞)

)
.

Theorem 6.15. Suppose that k is a regular noetherian ring and X is a proper scheme over k. Then

KKK(Perf(X),Perf(k)) = G(X) = K(CohX).

Consider the following functors:

Motloc,cyc
j!−→ Motloc

i∗−→ Motloc,A
1

= Mod(|Uloc(∆)|).

Theorem 6.16. For a connective E1-ring R we have

Map(j!1,Uloc(R)) = TC(R).

Suppose k is a Q-algebra. We have a commutative diagram

Motlock Modû(k[[u]])

Nuc(k[[u]]),

HC−

HC−,ref

where deg u = 2.

Exercise 6.17. For k = Q[x], we have

HC−,ref(Q[x, x−1]/Q[x]) = O
(⋂
n>0

{|u| ≤ |x|n ̸= 0}
)
,

where the right hand side is not generated by compact objects of Nuc(Q[x][[u]]).

Corollary 6.18. MotlocQ[x] is not compactly generated.
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