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1. Talk 1

Recall that PrLst is the category of presentable stable categories. We denote by ⊗ the Lurie tensor
product; then FunL(C,D) is the internal Hom and the category Sp of spectra is the unit for ⊗.

Definition 1.1. C is dualizable if C is dualizable in (PrLst,⊗). The dual is then given by C∨ =

FunL(C,Sp).

Definition 1.2. (i) A functor F : D → E is called a homological epi if the restriction Ind(E)→
Ind(D) is fully faithful or, equivalently, if the induced functor Ind(D)→ Ind(E) is a Bousfield
localization.

(ii) A map R→ S of ring spectra is a homological epi if the following equivalent conditions hold:
• the induced functor Mod(R)ω → Mod(S)ω is a homological epi.
• Mod(R)→ Mod(S) is a Bousfield localization.
• the restriction Mod(S)→ Mod(R) is fully faithful.
• S ⊗R S

∼−→ S.
• S ⊔R S

∼−→ S, where the pushout is taken in E1-rings.
• I ⊗R I

∼−→ I, where I = fib(R→ S).
(iii) A non-unital ring spectrum R is called H-unital if R+ = R ⊕ S → S is a homological epi,

where S is the sphere spectrum.

Definition 1.3. (i) A map x→ y in C is called (weakly) compact if for every filtered colimit
d = colimi di and every map y → d, the composite x→ y → d factors over some di0 :

x y

di0 colimi di.

∃

1
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(ii) An object x ∈ C is called compactly exhaustible if it can be written as

x = colim(x0 → x1 → · · · )

with compact transition maps xi → xi+1.
(iii) An object x ∈ C is called transfinitely compactly exhaustible if it can be written as

x = colim
i∈I

xi,

where I is filtered, without terminal object, and antisymmetric (i.e., the non-invertible
morphisms in I form an ideal; equivalently one-sided inverses are invertible), such that for
every non-invertible map i→ j in I, the induced map xi → xj is compact.

Nikolaus:dualizable
Theorem 1.4. For C ∈ PrLst the following are equivalent:

(1) C is dualizable.
(2) C is a retract in PrLst of a compactly generated stable category, i.e., C = Ind(C0) for a small

stable category C0.
(3) C is the kernel of

Ind(D) Ind(F )−−−−→ Ind(E),

where D, E are small stable categories and F : D → E is an exact homological epi.
(4) C is the kernel of

Mod(R)→ Mod(S)

for a map R → S of ring spectra which is a homological epi. In this case we write C =
Mod(R, I).

(5) C is the kernel of

Mod(R+)→ Mod(S) = Sp,

where R is an H-unital ring spectrum. In this case we write C = ModH(R).
(6) The colimit functor k : Ind(C) → C admits a left adjoint ȷ̂ (which is automatically fully

faithful since the right adjoint j of k is fully faithful).
(7) C is ω1-compactly generated and the colimit

k : Ind(Cω1 )→ C

admits a left adjoint.
(8) C is generated under colimits by compactly exhaustible objects.
(9) Every object in C is transfinitely compactly exhaustible.

(10) (AB6) Products in C distribute over filtered colimits: the natural map

colim
(ik)k∈

∏
k∈K Ik

∏
k∈K

xk,ik
∼−→

∏
k∈K

colim
i∈Ik

xk,i

is an isomorphism in C.1

1Since we are in a stable category, we may equivalently replace products with limits. Moreover, one can assume
that all Ik’s are the same.
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“Proofs”: If C is dualizable, we have a Bousfield localization Ind(Cκ)→ C. We then obtain a lifting
diagram

Ind(Cκ)⊗ C∨ C ⊗ C∨

Sp,

coev

where the lift exists, because a functor from Sp is uniquely determined by specifying the image of S.
Reinterpreting, we obtain a lift

Ind(Cκ)

C C.
For the implication (2) =⇒ (6), write C = Ind(C0). Then we have

ȷ̂ = Ind(C0 ↪→C) : C = Ind(C0)→ Ind(C).
To pass to retracts, use some abstract argument.

For the implication (6) =⇒ (2), use ȷ̂ : C → Ind(C).
Ad (7) =⇒ (3): Consider

C ȷ̂−→ Ind(Cω1)→ Ind(Cω1)/C = Ind(Calkcont(C)).

To see the equality, use that Cω1
pr−→ Calkcont(C) is a homological epi.

Finally, for (6) ⇐⇒ (10), note that distributivity is equivalent to k : Ind(C) → C preserving
products. (This relies on the fact that the category of anima satisfies (AB6).) □

Example 1.5. The category Shv(X) of sheaves with values in Sp on a locally compact space
X is generated by sheaves of the form Σ∞

+ U , where U is the sheaf on X represented by U and
Σ∞

+ : Ani → Sp is the suspension functor. Every inclusion U ↪→ V in Open(X) factors through a
compact subset K, that is, U → K → V . It follows that Σ∞

+ U → Σ∞
+ V is a compact map. Finally,

Σ∞
+ U is compactly exhaustible if U is, and every U is a filtered colimit of such. Therefore, Shv(X)

is dualizable.

Properties 1.6 (of dualizable categories). Let C,D be dualizable categories.
(a) An object x ∈ C is compactly exhaustible if and only if x is ω1-compact.
(b) A functor F : C → D in PrL is strongly left adjoint (meaning that F admits a right adjoint

that preserves colimits) if and only if F preserves compact morphisms, if and only if the
following diagram commutes:

Ind(C) Ind(D)

C D.

Ind(F )

ȷ̂

F

∼
ȷ̂

(c) A morphism x→ y in C is compact if it lifts to a map jx→ ȷ̂y in Ind(C). In this case, we
define the space of compactly assembled maps as the spectrum

mapcaC (x, y) := mapInd(C)(jx, ȷ̂y).

(d) If x = colimi∈I xi is I-compactly exhaustible, then ȷ̂(x) = colimi∈I jxi in Ind(C).
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(e) Recall the resolution

C → Ind(Cω1)→ Ind(Calkcont(C)),
where Calkcont(C) := (Ind(Cω1)/C)ω, and denote p : Cω1 → Calkcont(C) the projection. Then

mapCalk(C)(px, py) = mapC(x, y)/mapcaC (x, y).

Definition 1.7. We denote PrLdual the category of dualizable categories with strongly left adjoint
functors.

Corollary 1.8. A left adjoint functor Shv(X) → D is strongly left adjoint if the corresponding
cosheaf F : Open(X) → D satisfies the following condition: for every U ⋐ V , the induced map
F(U)→ F(V ) is a compact morphism in D.

Definition 1.9. We define the continuous K-theory of a dualizable category C as the fiber

Kcont(C) = fib
(
K(Cω1)→ K(Calkcont(C))

) ∼= ΩK(Calkcont(C)).

2. Talk 2: Verdier duality and 6 functors

2.1. Recap. Let C be a dualizable category. Recall that we have a resolution

C → Ind(Cω1)→ IndCalkcont(C).
The category PrLdual of dualizable categories with strongly left adjoint functors is itself a presentable
category (due to Ramzi), and the forgetful functor PrLdual → PrL preserves colimits.

Exercise 2.1. To compute colimits in PrL, use PrL ≃ (PrR)op and use that PrR → Cat commutes
with limits. Use this to prove that PrLdual → PrL commutes with colimits.

Definition 2.2. Let C be a dualizable category. We define the continuous K-theory as

Kcont(C) := fib
(
K(Cω1)→ K(Calkcont(C))

)
≃ ΩK(Calkcont(C)).

Remark 2.3. In increasing generality, K-theory has been defined in the following setups:
(i) for rings R;
(ii) for additive categories (e.g., ProjR);
(iii) for (small) stable categories (e.g., Mod(R)ω);
(iv) for dualizable categories (e.g., Mod(R) or Mod(R, I)).

2.2. Verdier duality and 6 functors. Let f : Y → X be a continuous map. Then we have an
adjunction

f∗ : Shv(X) Shv(Y ) :f∗.

If f is locally separated and locally proper (due to Schnürer and Soergel), we have another adjunction

f! : Shv(Y ) Shv(X) :f !.

Moreover, on Shv(X) we have a symmetric monoidal structure ⊗ and an internal hom Hom.

Definition 2.4. A commutative algebra C ∈ CAlg(PrLst) is called locally rigid if:
(i) The functor ⊗ : C ⊗ C → C admits a cocontinuous right adjoint ∆: C → C ⊗ C which is a
C-C-bimodule map.2

(ii) C is dualizable; equivalently there exists a counit C → Sp for the comultiplication ∆.

2Note that this is just a condition and not additional structure, since ∆ is automatically a lax bimodule map.
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We call C rigid if in addition 1 ∈ Cω.

Example 2.5. (a) Let R be a commutative ring. Then Mod(R) is rigid, because we have

Mod(R)⊗Mod(R) Mod(R)

Mod(R⊗S R),

⊗R

≃
res

where the upper diagonal map is given by base-change along m : R⊗S R→ R.
(b) For a homological epi R → R/I of commutative rings, the category Mod(R, I) is locally

rigid, and it is rigid if and only if I is compact as an R-module.
(c) A small stable category C is rigid if and only if Ind(C) is rigid.
(d) Let X ∈ LCHaus. Then Shv(X) is locally rigid; if moreover X is compact, then Shv(X) is

rigid. To see this, note that we have a commutative diagram

Shv(X)⊗ Shv(X)

Shv(X ×X) Shv(X)

⊗

≃
∆∗

∆∗

and note that ∆∗ = ∆!, so that ∆∗ has a right adjoint. The Frobenius identity (that is, the
fact that ∆∗ is a bimodule map) follows from the projection formula.

The counit is given by Γc = p! : Shv(X)→ Sp, where p : X → pt is the tautological map.
(e) The category D(Z)∧p is compactly generated and locally rigid. But it is not rigid, because

the unit Z is not compact.

Proposition 2.6. (1) If C is locally rigid, then

Sp
unit−−→ C ∆−→ C ⊗ C

exhibits C as a Frobenius algebra (i.e., the composition is the coevaluation for a self-duality
on C). In particular, C ≃ C∨.

(2) The counit C → Sp (which is dual to the unit Sp→ C) is equivalent to

C → Sp,

X 7→ mapca(1,−) ≃ Γc(−).
The self-duality is exhibited by the equivalence

C ∼−→ FunL(C,Sp),
X 7→ mapca(1, X ⊗−),

(F ⊗ id)(∆(1))←[ F.

Example 2.7. We have
Shv(X) ≃ Shv(X)∨ ≃ coShv(X),

which is known as Verdier duality. The evaluation map for this duality is given by

Shv(X)⊗ Shv(X)→ Sp,

(F ,G) 7→ Γc(F ⊗ G).
For a map f : Y → X in LCHaus, the functor f! is dual to f∗.
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Proposition 2.8. Let C be locally rigid and M a C-module (in PrLst). Then M is dualizable relative
to C (i.e., dualizable in ModC(Pr

L
st)) if and only if M is dualizable in PrLst.

Example 2.9. A Z-linear stable category is dualizable over Z if and only if it is dualizable over S.

Definition 2.10. A morphism f : x→ y in a closed symmetric monoidal category C is called trace
class if it lifts as follows:

Hom(x,1)⊗ y

1 Hom(x, y).

∃

f

Theorem 2.11 (Clausen, Ramzi, Scholze). Let C ∈ CAlg(PrLst), such that the underlying category
is dualizable, then:

(a) C is locally rigid if and only if

{compact morphisms} ⊆ {trace class morphisms}.
(b) The unit 1 ∈ C is compact if and only if

{trace class morphisms} ⊆ {compact morphisms}.
(c) C is rigid if and only if the classes of compact morphisms and of trace class morphisms agree.

Example 2.12. In order to see that Shv(X) is locally rigid, it thus suffices to see that the maps
Σ∞

+ U → Σ∞
+ V are trace class for all U ⋐ V .

Definition 2.13. Let A → B be a map in CAlg(PrLst). Then B is called locally rigid over A if:
(i) The multiplication B ⊗A B → B has an A-linear and cocontinuous right adjoint ∆: B →
B ⊗A B which is a B-B-bimodule map.

(ii) B is dualizable relative to A (i.e., B is dualizable in ModA(Pr
L
st)); equivalently, there exists

a counit B → A for the comultiplication ∆.

Example 2.14. Let f : Y → X be a locally proper and separated map of topological spaces. Then
Shv(Y ) is locally rigid over Shv(X).

Proposition 2.15. Let A → B be locally rigid.
(a) A B-module M is dualizable over B if and only if M is dualizable over A.
(b) Given an algebra map B → C, then C is locally rigid relative to B if and only if C is locally

rigid relative to A.

Theorem 2.16. The category CAlg(PrLst)
op carries a 6-functor formalism in which the exceptional

maps are locally rigid maps.

3. Talk 3

Definition 3.1. A simple anima is a compact anima Z together with a lift

χloc A(pt)⊗ Z A(Z) χ = [S]

K((SpZ)ω) K(S[ΩZ])

∈ Assembly

≃

∋



CONTINUOUS K-THEORY AND GEOMETRIC TOPOLOGY 7

The ∞-groupoid Anisimple is defined as the pullback

Anisimple Ani∗/

(Aniω)≃ Ani,

⌟

where the bottom map is given by mapping a compact anima χ to the anima of lifts χloc of χ.

Theorem 3.2 (Wall ’65). A compact anima is a finite anima if and only if it refines to a simple
anima.

Theorem 3.3 (Whitehead ’50). A homotopy equivalence between finite CW complexes is simple
(i.e., homotopic to a composition of elementary expansion and collapse maps) if and only if it refines
to a map in Anisimple.

Theorem 3.4 (Hatcher, Waldhausen, Waldhausen–Jahren–Rognes). The ∞-groupoid Anisimple is
equivalent to Hatcher’s classifying space of simple homotopy types, i.e., the geometric realization

|{Polyhedra, simple maps}| ≃ |{sSetfinnd, simple maps}|.

Theorem 3.5. (1) West ’77: Every compact manifold (AMR) has the homotopy type of a finite
CW complex.

(2) Chapman ’65: Every homeomorphism between finite CW complexes is a simple homotopy
equivalence.

We construct a functor{
nice compact topological

spaces with homeomorphisms

}
→ Anisimple .

Recall: Let X be a locally compact Hausdorff space. We have seen that Shv(X; Sp) is dualizable.

Definition 3.6. Let C be dualizable. We define

ĉoShv(X; C) := Homdual(Shv(X); C) ⊆ Ind(coShv(X; C)).

It is covariantly functorial in proper maps f : X → Y induced by f∗ : Shv(Y )→ Shv(X).
Moreover, we define

ĉoShvcs(X; C) = colim
K⊆X

compact

ĉoShv(K; C),

which is functorial in all maps.

Remark 3.7. We have(
ĉoShv(X; C)

)ω
= FunsL

(
Sp, ĉoShv(X; C)

)
= FunsL(Shv(X); C) ⊆ coShv(X; C),

which is a full subcategory on all cosheaves F such that F(U)→ F(V ) is compact for U ⋐ V .

Proposition 3.8. Assume that the topos Shv(X; Ani) is of locally constant shape (e.g., if X
is hypercomplete and sublocally contractible, or is ANR). Equivalently, the functor p∗ : Ani →
Shv(X,Ani) has a left adjoint p♮ (in addition to its obvious right adjoint p∗).

Then Shv(X; Sp) is proper. If X is countable at ∞, then it is ω1-compact.
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Proof. We need to show that the evaluation

Shv(X; Sp)⊗ Shv(X; Sp)
⊗=∆∗

−−−−→ Shv(X; Sp)
p!−→ Sp

is strongly left adjoint. Since ∆∗ is strongly left adjoint, we have to show that p! is strongly left
adjoint. As p! is dual to p∗, this is the case if and only if p∗ admits a left adjoint. □

Corollary 3.9. Under these assumptions we have

Kcont(ĉoShv(X; C)) = KKcont(Shv(X); C) def
= mapMot(U Shv(X),UC)

∼= Hlf(X;Kcont(C)) = p∗p
!Kcont(C)

∼= Π∞X ⊗Kcont(C) (if X is compact)

where U is the universal localizing invariant and Π∞X denotes the shape of X.

Proposition 3.10. Let X ∈ LCHaus be σ-compact and of stably locally constant shape. There is a
canonical compact object

χloc ∈ ĉoShv(X; Sp)

given as p♮ = p!(−⊗ ωX) : Shv(X; Sp)→ Sp. As a cosheaf it is given by U 7→ Σ∞
+ Π∞U .

Corollary 3.11. If X is compact, then χloc ∈ Π∞X ⊗Kcont Sp.

Question 3.12. Is there a “nice” description of Kcont
0 (C)?

Theorem 3.13 (Bartels–N.). There is a strongly left adjoint functor

A : ĉoShvcs(X; C)→ CΠ∞X = Loc(X; C)
with the following properties:

(i) It induces the assembly map on K-theory.
(ii) It takes χloc to χ = S if X is compact and C = Sp.

Proof/Construction. We prove (i) under the assumption that X is compact. Then

ĉoShv(X; C) = Homdual(Shv(X); C) ⊗ SpΠ∞X

−−−−−−→ Hom
(
Shv(X)⊗ SpΠ∞X , CΠ∞X

)
D∗

−−→ Homdual(Sp, CΠ∞X) = CΠ∞X ,

where D : Sp→ Shv(X)⊗ SpΠ∞X is left adjoint to

Shv(X)⊗ SpΠ∞X ψ∗

−−→ Shv(X)⊗ Shv(X)
∆∗

−−→ Shv(X)→ Sp .

□
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