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1. Rank conjectures in algebra (and topology)

1.1. Notation and conventions. Usually, we will be working over a local ring
(R,m, k). The notation means R is a commutative, Noetherian ring with a unique
maximal ideal m, and we set k := R/m. Later, in a few spots, in order to relate the
ideas presented here to topology, we will talk about modules (in fact, dg modules)
over graded polynomial rings.

Example 1.1. R = (k[x1, . . . , xn]/I)m for some field k and ideal I = (f1, . . . , fc)
generated by polynomials fi ∈ m where m = (x1, . . . , xn), or the completion of
such: k[[x1, . . . , xn]]/(f1, . . . , fc). We identify k with R/m.
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A chain complex of R-modules will almost always be indexed by subscripts, with
its differential, usually written as ∂, lowering the degree by one:

M = (· · · ∂−→Mn
∂−→Mn−1

∂−→ · · · )

On rare occasions we use superscripts — in this case, Mn should be interpreted as
M−n and the differential will increase the superscript by one. Hi(M) denotes the

i-th homology module of a complex, Hi(M) = ker(Mi→Mi−1)
im(Mi+1→Mi)

, and H(M) denotes

the graded R-module H(M) :=
⊕

iHi(M).
Given two complexes M and N of R-modules, we define their tensor product

M ⊗R N to be the complex obtained by totalization of the evident bicomplex; in
more detail

(M⊗R N)l =
⊕
i+j=l

Mi ⊗R Nj

equipped with the differential given by

(1.2) ∂(m⊗ n) = ∂(m)⊗ n+ (−1)im⊗ ∂(n) for m ∈Mi and n ∈ Nj .

For elements f1, . . . , fc ∈ R, the Koszul complex KosR(f1, . . . , fc) is defined as
follows: For c = 1,

KosR(f1) = (0→ R
f1−→ R→ 0) with R in degrees 0 and 1,

and in general

KosR(f1, . . . , fc) = KosR(f1)⊗R · · · ⊗R KosR(fc).

A better way of describing KosR(f1, . . . , fc) is as the exterior algebra ΛR(e1, . . . , ec)
over R on degree one generators e1, . . . , ec equipped with the unique R-linear dif-
ferential such that ∂(ei) = fi and ∂ obeys the graded Leibnitz rule: ∂(α · β) =
∂(α) · β + (−1)|α|α · ∂(β) for all α, β ∈ ΛR(e1, . . . , ec).

For instance,

KosR(x, y, z) =
(

0→ R
C−→ R3 B−→ R3 A−→ R→ 0

)
where

C =

 z
−y
x

 , B =

−y −z 0
x 0 −z
0 x y

 , A =
[
x y z

]
.

Here, the matrices are relative to the following bases: e1 ∧ e2 ∧ e3 for F3, {e1 ∧
e2, e1 ∧ e3, e2 ∧ e3} for F2, {e1, e2, e3} for F1, and 1 for F0.

1.2. Some commutative, and homological, algebra over local rings. Fix a
local ring (R,m, k).

A sequence of elements x1, . . . , xc ∈ m ⊆ R contained in the maximal ideal of R
is a regular sequence if xi+1 is a non-zero divisor in the quotient ring R/(x1, . . . , xi)
for all 0 ≤ i ≤ c − 1. This is equivalent to the condition that the Koszul complex
KosR(x1, . . . , xc) is exact everywhere except in degree 0, and hence is a bounded
free resolution of M := R/(x1, . . . , xc).

Exercise 1.3. Prove the equivalence asserted above. Tip: Use that KosR(x1, . . . , xi+1)

is the mapping cone of KosR(x1, . . . , xi)
xi+1−−−→ KosR(x1, . . . , xi).
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The depth of R, written depth(R), is the largest value of c such that a regular
sequence x1, . . . , xc ∈ m exists. Since dim(R/x) = dim(R)−1 for a non-zero-divisor
x ∈ m, it follows that

depth(R) ≤ dim(R);

when equality holds, R is called a Cohen-Macaulay (CM) ring.
Recall that a local ring is regular if m can be generated by d = dim(R) elements,

say x1, . . . , xd. In this case, x1, . . . , xd is necessarily a regular sequence. In partic-
ular, regular rings are CM. Note that in this case KosR(x1, . . . , xd) is the minimal
resolution of k.

Recall that an R-module M has finite length if it admits a filtration

0 = M0 ⊆ · · · ⊆Ml = M

with Mi/Mi−1 simple (in the local case, this means isomorphic to k = R/m) for all
i; the value of l, which is an invariant, is the length of M , written as lengthR(M).
When R “contains its residue field” (i.e. R is a k-algebra such that the composition
of the canonical maps k → R � R/m = k is an isomorphism — for example
R = k[[x1, . . . , xn]]/I), we have lengthR(M) = dimk(M).

For a local ring R, given a complex of R-modules

F = (· · · → Fi
∂i−→ Fi−1 → · · · )

we say F
(1) is minimal if each Fi is free of finite rank, and ∂i(Fi) ⊆ m · Fi−1 for all i,
(2) is finite free if it is bounded (Fm = 0 for m � 0 and m � 0) and each Fi

is free of finite rank,
(3) has finite length homology if lengthHi(F) <∞ for all i,
(4) is tiny (this is non-standard notation) if F is finite free with finite length

homology and it is of the form F = (0 → Fd → · · ·F0 → 0) where d is the
Krull dimension of R.

Example 1.4. Let x1, . . . , xd ∈ m ⊆ R be a system of parameters — recall that this
means d = dim(R) andR/(x1, . . . , xd) has finite length. Then F = KosR(x1, . . . , xd)
is a tiny complex. This holds since the homology F is a finitely generated module
over H0(F) = R/(x1, · · · , xd), which has finite length.

Theorem 1.5. Let (R,m, k) be local of Krull dimension d and assume F is a finite
free complex.

(1) If F has finite length homology and is of the form F = (0 → Fs → · · · →
F0 → 0) and is non-trivial (i.e., H(F ) 6= 0), then s ≥ d. This is the New
Intersection Theorem [Rob89].

(2) If F is tiny and non-trivial, then the non-zero homology of F is precisely in
the range [0,dim(R) − depth(R)] — i.e., Hi(F) = 0 for all i > dim(R) −
depth(R) and Hi(F) 6= 0 for all 0 ≤ i ≤ dim(R)− depth(R). In particular,
if R is CM then Hi(F) = 0 for all i 6= 0 and hence F is a resolution of the
module H0(F).

(3) Conversely, if M is non-zero R-module having finite length and finite pro-
jective dimension, then R must be CM and the minimal resolution of M is
tiny. This is a consequence of the Auslander-Buchsbaum Formula (pdR(M) =
depth(R)− depth(M)) and the New Intersection Theorem.
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So, there is a dichotomy involving tiny complexes: When R is CM, every tiny
complex is the resolution of a module (necessarily of finite length and finite pro-
jective dimension). When R is not CM, there are no such modules, and every
non-trivial tiny complex has homology in strictly positive degrees.

Example 1.6. Let x1, . . . , xd ∈ m be a system of parameters for R. R is CM
if and only if x1, . . . , xd is a regular sequence if and only if the tiny complex
KosR(x1, . . . , xd) is the resolution of a module (namely, R/(x1, . . . , xd)).

1.3. Algebraic Rank Conjectures.

Conjecture 1.7 (Buchsbaum-Eisenbud-Horrocks (BEH) Conjecture). Assume (R,m, k)
is a local ring of dimension d and M is a non-zero module of finite length and finite
projective dimension, and let F be a finite free resolution of M . Then ranki(Fi) ≥(
d
i

)
.

Status of this conjecture: More or less wide open.

Remark 1.8. This is sometimes phrased in terms of Betti numbers: The i-th Betti
number of M is rank(Fi) where F is the minimal free resolution of M . Equiv-

alently, βi(M) = dimk TorRi (M,k) = dimk ExtiR(M,k). With this notation, the

BEH conjecture is βi(M) ≥
(
d
i

)
whenever M has finite length and finite projective

dimension. As Craig Huneke has pointed out to me, there does not seem to be a
compelling reason to include “finite projective dimension” as an assumption in this
conjecture.

As partial motivation:

Example 1.9. Suppose R is Cohen-Macaulay and x1, . . . , xd ∈ m is a regular
sequence, where d = dim(R). Then R/(x1, . . . , xd) has finite length and finite pro-
jective dimension, and its minimal free resolution is given by F = KosR(f1, . . . , fd),

which satisfies rankR Fi =
(
d
i

)
. Thus, the lower bound in BEH, if correct, is sharp.

More generally we have:

Proposition 1.10 (Buchsbaum-Eisenbud). [BE77] If M = R/I has finite length
and finite projective dimension and its minimal free resolution F admits the struc-
ture of commutative dga, then there exists an injection K ↪→ F for some Koszul
complex K on a system of parameters, and hence rankFi ≥ rankKi =

(
d
i

)
.

Remark 1.11. The BEH Conjecture appears in [BE77] and [Har79]. For the latter, it
is actually phrased as a question. For the former, the original conjecture was that
the hypothesis of Proposition 1.10 holds for any (cyclic) module of finite length
and finite projective dimension. Counter-examples to this stronger conjecture were
already known by Avramov (see [Avr81]), but the conjecture now known as BEH
has survived.

I will say nothing more about the BEH Conjecture. Instead, the focus of these
talks will be on the following conjecture. Some refer to it the “Weak BEH” conjec-
ture, but I prefer calling it the Total Rank Conjecture.

Conjecture 1.12 (Total Rank Conjecture). Assume (R,m, k) is a local ring of
dimension d.
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• (Avramov) If M is a non-zero module of finite length and finite projective
dimension (and hence R is CM), and F is a finite free resolution of M ,
then rank(F) =

∑
i rank(Fi) ≥ 2d.

• More generally, if F is a non-trivial tiny complex, then rank(F) ≥ 2d. (This
was not conjectured by Avramov, but should have been.)

Status of this conjecture: It is know when R is equi-characteristic (i.e., contains a
field as a subring) and for certain rings of mixed characteristic so long as char(k) 6=
2.

Example 1.13. If R is any local ring (not necessarily CM) and x1, . . . , xd ∈ m,
where d = dim(R), is any system of parameters, then F := KosR(f1, . . . , fd) is a
tiny complex meeting the predicted lower bound.

Conjecture 1.14 (Total Rank Conjecture for Finite Free Complexes (Folklore)).
If R is a local ring of dimension d and F is any non-trivial finite free complex with
finite length homology, then rank(F) ≥ 2d.

Status of this conjecture: Known to be false when char(k) 6= 2. The case
char(k) = 2 remains open and is intriguing.

Remark 1.15. Every finite free complex F decomposes as F = F ⊕ Ftrivial with F
minimal and Ftrivial exact (and hence contractible). In particular, βi(F) = rank(F i),
and the assertion that rank(F) ≥ 2d for all suitable F is equivalent to the assertion
that β(F) ≥ 2d for all suitable F.

1.4. Generalization to dg modules, a brief aside on the toral rank con-
jectures. Let S be the graded ring S = k[x1, . . . , xd] with each xi declared to be
of homological degree −2. Set m = (x1, . . . , xd) and k = S/m. A dg S-module M is
a graded S-module equipped with an S-linear endomorphism ∂ of degree −1 such
that ∂2 = 0. For instance k is a dg-S-module with trivial differenital. A dg-module
F is semi-free if it admits a filtration

0 = F(−1) ⊆ F(0) ⊆ F(1) ⊆ · · ·F
such that F =

⋃
i F(i) and F(i)/F(i−1) is isomorphic to a direct sum of shifts of S

with trivial differential.

Conjecture 1.16 (Total Rank Conjecture for dg Modules). If F is a semi-free dg
S-module with non-zero, finite length homology then rank(F) ≥ 2d.

Status of this conjecture: Known to be false when char(k) 6= 2; open when
char(k) = 2.

Conjecture 1.17 (Total Rank Conjecture for Formal dg Modules). If F is a semi-
free dg S-module with non-zero, finite length homology that is quasi-isomorphic, as
a dg-S-module, to its homology, then rank(F) ≥ 2d.

Status of this conjecture: Known to hold for any field k.
Let me indicate briefly, and rather heuristically, how this algebraic conjecture is

related to topology — Leo will go into more details. First, I recall:

Conjecture 1.18 (Toral Rank Conjecture). Suppose the d-dimensional torus T =
Td = (S1)×d acts freely (and “reasonably”) on a compact CW complex X. Then
rankQH

∗
sing(X,Q) ≥ 2d, where H∗sing denotes the singular cohomology of a topolog-

ical space.
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Status of this conjecture: Open
Under the assumption of the Toral Rank Conjecture, set Y = X/T , the quotient

space for the action. Then there is an induced map p : Y → BT where BT is the
classifying space of the torus. We have BT = (CP∞)×d and the rational cohomology
ring of BT may be identified with the graded ring S above, with k = Q. This
map leads to a dg-S-module (in fact, dg S-algebra) A(Y ) with the following two
properties:

• H∗(A(Y )) ∼= H∗sing(Y,Q) and

• H∗(A(Y )⊗L
S k) ∼= H∗(X,Q).

Example 1.19. Taking X = Td with the action given by multiplication. Then
Hi

sing(X,Q) =
(
d
i

)
, attaining the predicted lower bound of the Toral Rank Conjec-

ture. In this example, we have Y = {pt} and thus A(Y ) = k. We may resolve k by
the semi-free dg-S-module KosS(x1, . . . , xd) and hence A(Y ) ⊗L

S k is the exterior
algebra over k generated by d elements of (cohomological) degree 1 with trivial
differential. This confirms that A(Y )⊗L

S k gives the cohomology of X.
So, the example of the self-action of the torus is a topological version of the

example of k being a module of finite length and finite projective dimension over a
regular local ring.

Proposition 1.20. The Total Rank Conjecture for dg Modules implies the Toral
Rank Conjecture.

Proof. Choose a minimal, semi-free dg S-module F quasi-isomorphic toA(Y ). Then

rank(F) = β(F) = dimkH
∗(A(Y )⊗L

S k) = dimkH
∗
sing(X,Q),

and the claim is now clear. �

As noted, the TRC for dg Modules is false in characteristic 0, but the Toral Rank
Conjecture remains open. A key point is that the counter-examples of the former
are not dgas.

1.4.1. An aside on BGG. Let me mention that construction Y = X/T admits an
algebraic manifestation. Let E = ΛQ(e1, . . . , ed) be an exterior algebra on d gen-
erators of (homological) degree 1. Then the Bernsetien-Gel’fand-Gel’fand (BGG)
correspondence relates dg-S-modules and dg-E-modules. Specifically, if M is a dg-
S-module, then M ⊗k E equipped with the differential ∂M ⊗ id +

∑
i xi ⊗ ei is a

dg-E-module. For example, if M = k equipped with the trivial differential, the
corresponding dg-E-module is E equipped with the trivial differential. More gener-
ally, under this correspondence, a dg-S-module M with finite length total homology
corresponds to a perfect dg-E-module P, such that

∑
i βi(M) = dimkH(P). Thus:

Proposition 1.21. The TRC for dg Modules is equivalent to the conjecture that
every non-trivial perfect dg-E-module P satisfies dimkH(P) ≥ 2d.

Remark 1.22. Under BGG, formal dg S-modules correspond to dg-E-modules hav-
ing linear differentials.

1.5. Another family of (algebraic and topological) conjectures. Let’s start
with topology this time. For a prime p define the n-dimensional p-torus to be the
group (Cp)

×n where Cp is cyclic of order p. The name comes from the fact that
this group forms the p-torsion of n-torus Tn. Ergun will go into much more detail
on the following:
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Conjecture 1.23 (Carlsson). If a space X admits a cellular and free action by a
n-dimensional p-torus, then

∑
i dimZ/pHi(X;Z/p) ≥ 2n.

Status of this conjecture: Open
Such an action determines a finite free complex F over the finite dimensional

Z/p-algebra Z/p[x1, . . . , xn]/(xp1, . . . , x
p
n) with Hi(F) ∼= Hi(X,Z/p). This leads to:

Conjecture 1.24 (Algebraic Analogue of Carlsson’s Conjecture [AB88]). Let k be
a field of characteristic p > 0 and let R be the ring R = k[x1, . . . , xn]/(xp1, . . . , x

p
n)

for any n ≥ 1. If F is any non-trivial, finite free complex over F , then dimkH(F) =∑
i dimkHi(F) ≥ 2n.

Status of this conjecture: Known to be false when p 6= 2; open and intriguing
when p = 2.

Notice that this conjecture focuses on the homology of F, not its Betti numbers.
But it is nevertheless related to the rank conjectures introduced above, at least in
the case p = 2. Let me explain:

When p = 2, we may identify R with the exterior algebra over k on d genera-
tors: R ∼= Λk(e1, . . . , en) (with ei = xi). (Importantly, this is not a graded ring,
but rather viewed as an ordinary ring, i.e., concentrated in degree 0.) Thus, a
version of BGG (rediscovered by Carlsson) relates complexes of R-modules with
dg-modules over the graded polynomial ring P := k[t1, . . . , tn] with deg(ti) = −1.
This equivalence sends a finite free complex F over R to a dg-P -module G with
finite length homology, and moreover dimkH(F) =

∑
i βi(G).

For instance, the complex with R in degree 0 and 0’s elsewhere corresponds to
a dg-P -module that is quasi-isomorphic to k = P/m.

Thus, Carlson’s conjecture in characteristic two fits into the general framework:
If the evident analogue of the Total Rank Conjecture for dg Modules holds for the
graded ring P , then the Algebraic analogue of Carlsson’s conjecture holds for p = 2.

2. Grothendieck groups and Adams operations

The main goal of these talks is to give details on the proofs of the various Total
Rank Conjectures in certain cases. I will also discuss counter-examples. A central
tool in these proofs is the notion of Adams operations on Grothendieck groups. In
this section we develop this tool.

2.1. Grothendieck groups.

Definition 2.1. For a commutative noetherian ring R, let Kfl
0 (R) be the abelian

group generated by isomorphism classes of finite free complexes having finite length
homology and subject to the two relations

• [F] = [F′] if F and F′ are quasi-isomorphic (equivalently, homotopy equiva-
lent) complexes and
• [F] = [F′] + [F′′] if there is a short exact sequence 0→ F′ → F→ F′′ → 0 of

complexes.

Remark 2.2. For a Zariski closed subset Z of Spec(R), KZ
0 (R) is the abelian group

generated by bounded complexes of finitely generated, projective R-modules with
homology supported on Z subject to the same two relations given above. (F is
supported on Z if the localized complex Fq is exact for all q /∈ Z.) For a local ring

(R,m, k) we have Kfl
0 (R) = K

{m}
0 (R).
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Exercise 2.3. Prove [F]+F′] = [F⊕F′] and [F] = −[ΣF] where ΣF is the suspension
of F. In particular, conclude that every class in Kfl

0 (R) may be represented by a
single complex concentrated in non-negative degrees.

Definition 2.4. For a finite free complex F with finite length homology, its Euler
characteristic is

χ(F) =
∑
i

(−1)i lengthRHi(F) ∈ Z.

Since χ(−) respects the two relations defining the Grothendieck group, it extends
to a homomorphism

χ : Kfl
0 (R)→ Z.

Exercise 2.5. If R is a regular local ring, then χ : Kfl
0 (R)

∼=−→ Z is an isomorphism.
Moreover, the element 1 ∈ Z corresponds to [KosR(x1, . . . , xd)] for a minimal set
of generators x1, . . . , xd of m.

The topic of the algebraic Rank Conjectures is finite free complexes, and any
such complex determines a class in Kfl

0 (R). At first glace it appears hopeless to
tackle this conjecture by considering classed in Kfl

0 , since “too much information
is lost”. For instance, if R is regular, then the only information about F recorded
by its class [F] is its Euler characteristic. (The Total Rank Conjecture for Modules
was open even for regular rings for several decades, and so this is hardly a trivial
case.) Nevertheless, with the help of certain extra structure, namely the Adams
operations, the TRC can be proven at least in some cases using this approach.

We will also have need for the more classical G0 group of a ring:

Definition 2.6. For a commutative Noetherian ring R, by G0(R) we mean the
abelian group generated by isomorphism classes of finitely generated R-modules
subject to the relation [M ] = [M ′] + [M ′′] whenever there is a short exact sequence
of the form 0→M ′ →M →M ′′ → 0.

Exercise 2.7. If R is a regular local ring, then G0(R) ∼= Z, generated by the class
of [R].

For a finite free complex F with finite length homology and finitely generated
module M , we set

χ(F,M) = χ(F⊗RM) =
∑
i

lengthRHi(F⊗RM).

(F ⊗R M is a bounded complex with finite length homology, and so this formula
makes sense.)

Exercise 2.8. Show χ(−,−) preserves the relations in each argument and thus
extends to a bi-linear pairing

χ(−,−) : Kfl
0 (R)⊗Z G0(R)→ Z,

which we also write as χ(−,−).

2.2. Tensor, exterior, and symmetric powers of free modules. Adams op-
erations arise from the non-additive functors of exterior and symmetric powers of
free modules. Let us review these notions:
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For a finite free module F over R, its n-th tensor power is

Tn(F ) = TnR(F ) =

n times︷ ︸︸ ︷
F ⊗R · · · ⊗R F ,

which is a free module of rank rank(F )n.
There is an action of the symmetric group Σn on Tn(F ) given by permuting the

tensor factors. The n-th symmetric power of F is

Sn(F ) := Tn(F )/Σn = Tn(F )/〈v1 ⊗ · · · ⊗ vn − vσ(1) ⊗ · · · ⊗ vσ(n) | σ ∈ Σn〉

with a typical generator written as v1 • · · · • vn. So, v1 • · · · • vn = vσ(1) • · · · • vσ(n)

for all σ ∈ Σn. Equivalently, regarding Tn(F ) as a (left) module over the group
ring R[Sn], we have

Sn(F ) = Rtrivial ⊗R[Sn] T
n(F )

where Rtrivial is R equipped with the (right) Σn action r · σ = r.

Remark 2.9. Upon choosing a basis x1, . . . , xr of F , we may identity Sn(F ) with
the degree n part of the polynomial ring R[x1, . . . , xr].

Likewise, the n-th exterior power of F is

Λn(F ) := Tn(F )/〈v1 ⊗ · · · ⊗ vn | vi = vj , i 6= j〉

with a typical generator written as v1 ∧ · · · ∧ vn. A standard trick shows that
v1 ∧ · · · ∧ vn = sign(σ)vσ(1) ∧ · · · ∧ vσ(n) for any σ ∈ Sn. When 2 is a invertible in
R, this latter collection of relations implies the former; that is, we have

Λn(F ) = Rsign ⊗R[Sn] T
n(F ) when 2 is invertible,

where Rsign is R equipped with the Σn action r · σ = sign(σ)r.

Remark 2.10. Upon choosing a basis e1, . . . , er of F , we may identity Λn(F ) with
the degree n part of the exterior algebra ΛR(e1, . . . , er) (where deg(ei) = 1).

We may also realize Λn(F ) as a submodule of Tn(F ) via the anti-symmetrization
map

Λn(F ) ↪→ Tn(F ), given by v1 ∧ · · · ∧ vn 7→
∑
σ∈Σn

sign(σ)vσ(1) ⊗ · · · ⊗ vσ(n).

Importantly for us, in the special case when n = 2, the sequence

(2.11) 0→ Λ2(F )
v∧w 7→v⊗w−w⊗v−−−−−−−−−−−→ T 2(F )

can−−→ S2(F )→ 0

is exact.

Exercise 2.12. Verify that (2.11) is exact.

2.2.1. Polynomial functors. Tn, Sn and Λn are examples of “polynomial functors
of degree n”. Let me explain what this means just in the cases n = 1 and n = 2.

Suppose T is a functor taking finite free R-modules to finite free R-modules that
sends 0 to 0. We say

(1) T is polynomial of degree 1 if it is non-trivial and additive: i.e., the canonical
split injection T (F ) ⊕ T (F ′) ↪→ T (F ⊕ F ′), induced from the canonical
inclusions F ↪→ F ⊕ F ′ and F ′ ↪→ F ⊕ F ′, is actually an isomorphism, for
all finite free modules F and F ′.
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(2) T is polynomial of degree 2 if the “first cross effects” bi-functor T ′(F1, F2) :=

coker(T (F1)⊕ T (F2)
can
↪−−→ T (F1 ⊕ F2)) is polynomial of degree 1 (i.e., non-

trivial and additive) in each argument.

E.g.,

• We have

T 2(F1 ⊕ F2) ∼= T 2(F1)⊕ T 2(F2)⊕ F1 ⊗R F2 ⊕ F2 ⊗R F1

and thus

(T 2)′(F1, F2) = F1 ⊗R F2 ⊕ F2 ⊗R F1.

The latter is additive in each argument, and thus T 2 is polynomial of degree
2.

• We have

Λ2(F1 ⊕ F2) ∼= Λ2(F1)⊕ Λ2(F2)⊕ F1 ⊗R F2

and so
(
Λ2
)′

(F1⊕F2) ∼= F1⊗R F2 and hence Λ2 is polynomial of degree 2.

• Similarly
(
S2
)′

(F1 ⊕ F2) ∼= F1 ⊗R F2 and S2 is polynomial of degree 2.

Note that the first cross-effects functors for Λ2 and S2 coincide, each given by
(F1, F2) 7→ F1 ⊗R F2. This will be an important point in defining the (second)
Adams operations.

2.2.2. The significance of 2. A important fact is that (2.11) is naturally split pro-
vided 2 is invertible in R, by the map S2(F )→ T 2(F ) sending v•w to 1

2v⊗w+w⊗v
or, equivalently, by the map T 2(V ) → Λ2(V ) sending v ⊗ w to 1

2v ∧ w. In other
words, we have a natural isomorphism

(2.13) T 2(F ) ∼= Λ2(F )⊕ S2(F ) when 2 is invertible.

No such (natural) splitting exists when char(R) = 2. This distinction turns
out to be the fundamental reason the status of the various Rank Conjectures is so
different depending on whether char(k) = 2.

Moreover, when char(R) = 2 (i.e., 1 + 1 = 0 in R), we loose (2.13) but gain an
interesting short exact sequence: note that v1 ∧ · · · ∧ vn = sign(σ)vσ(1) ∧ · · · ∧ vσ(n)

becomes v1 ∧ · · · ∧ vn = vσ(1) ∧ · · · ∧ vσ(n) since 2 = 0 implies 1 = −1. It follows
that there is a canonical surjection

Sn(F ) � Λn(F ), given by v1 • · · · • vn 7→ v1 ∧ · · · ∧ vn.
This map is not an isomorphism since products with repeated factors are trivial in
Λn but not typically in Sn. When n = 2 we can identify the kernel. Let Frob(F )

denote applying extension of scalars along the Frobenius ring map R
r 7→r2−−−→ R; i.e.,

Frob(F ) = R′ ⊗R F where R′ = R but viewed as an R-algebra via the Frobenius
map. So, Frob(F ) is also free, of the same rank as F , but a R-map from Frob(F )
to an arbitrary R-module M is given by an additive map g : F → M such that
g(rv) = rpg(v) for all r ∈ R, v ∈ F . (Intuitively, you may think of Frob(F ) as F
with R-action given by r · v = p

√
rv; this is only a heuristic, although it is literally

true if R is perfect.)

Proposition 2.14. When char(R) = 2, for any finite free R-module F there is a
natural short exact sequence

0→ Frob(F )
v 7→v•v−−−−→ S2(F )

v•w 7→v∧w−−−−−−−→ Λ2(F )→ 0.
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Proof. Pick a basis x1, . . . , xn of F . Then this sequence is given by

0→ R[x1, . . . , xn]1
xi 7→x2

i−−−−→ R[x1, . . . , xn]2
can−−→

(
R[x1, . . . , xn]/(x2

1, . . . , x
2
n)
)

2
→ 0

which is readily verified to be exact. �

Remark 2.15. In particular, this shows that when char(R) = 2, Frob coincides with
the second Adams operation; see below.

2.3. Extending to operators on complexes: the “naive” approach. We
will want to extend the operations on free modules considered above to finite free
complexes in a natural way and so that homotopy equivalence (quasi-isomorphism)
is preserved. For simplicity, we’ll focus on T 2, S2 and Λ2.

There is an evident candidate for T 2: Given a finite free complex F, we may
form the tensor product complex F⊗R F; see (1.2) above. Since F and F′ are both
finite free, if F ∼ F′ then F⊗R F ∼ F′⊗R F ∼ F′⊗R F′, and so this meets our basic
requirement.

Define an action of the symmetric group Σ2 on F⊗R F by

τ(v ⊗ w) = (−1)|v||w|w ⊗ v

where τ is the non-trivial element of Σ2. The sign is present so that τ determines
a chain map from F ⊗R F to itself. Define S2

naive(F) to be the result of modding
out by the S2-action and Λ2

naive(F) to be the result of modding out by the signed
S2-action. That is

S2
naive(F) = Rtrivial ⊗R[S2] (F⊗R F)

and

Λ2
naive(F) = Rsign ⊗R[S2] (F⊗R F).

Since τ respects the differential on F ⊗R F, both of these are in fact complexes,
with differential inherited from that on F ⊗R F. In fact, using that there is an
isomorphism of R[S2]-modules

(2.16) R[S2] ∼= Rtrivial ⊕Rsign

(since 2 is assumed to be invertible), we have an isomorphism of chain complexes

(2.17) F⊗R F ∼= S2
naive(F)⊕ Λ2

naive(F).

Remark 2.18. Ignoring the differential and grading on F, we have F = Feven ⊕
Fodd as free R-modules, where Feven =

⊕
i F2i and Fodd =

⊕
i F2i+1, and (still

ignoring differentials and gradeds) we have S2
naive(F) = S2(Feven)⊗R Λ2(Fodd) and

Λ2
naive(F) = S2(Fodd)⊗R Λ2(Feven).

These naive operators behave well provided 2 is invertible:

Proposition 2.19. Assume 2 has a multiplicative inverse in R. Then S2
naive and

Λ2
naive preserve quasi-isomorphisms of finite free complexes. Moreover, if F has

finite length homology then do both S2
naive(F) and Λ2

naive(F).

Proof. The first assertion holds sinceRtrivial andRsign are projectiveR[Σ2]-modules;
see (2.16). The second assertion follows from the first and the fact that both con-
structions localize well: S2

R,naive(F)p ∼= S2
Rp,naive(Fp) and similarly for Λ2

naive. �
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Exercise 2.20. Let F = KosR(x); that is, F = (0→ R · b ∂−→ R · a→ 0) for formal
symbols a and b of degrees 0 and 1, with ∂(b) = xa. Then

T 2(F) = (0→ F2 → F1 → F0 → 0)

with F2 = R · (b⊗ b), F1 = R · (a⊗ b)⊕ R · (b⊗ a) and F0 = R · (a⊗ a), with the
action of τ given by b⊗ b 7→ −b⊗ b, a⊗ b 7→ b⊗ a, and a⊗ a 7→ a⊗ a.

(1) Show that if 2 is invertible in R, then a basis of the free module underlying
S2

naive(F) is { 1
2 (a⊗ b+ b⊗ a), a⊗ a} and hence

S2
naive(F) ∼= (0→ R

x−→ R→ 0) = KosR(x).

(2) Show that when 2 is a invertible, Λ2
naive(F) has basis {b⊗ b, a⊗ b− b⊗ a},

and thus

Λ2
naive(F) ∼= (0→ R

x−→ R→ 0) with R in degrees 1 and 2;

i.e., Λ2(F) ∼= Σ1 KosR(x).
(3) Show that if char(R) = 2, then

S2
naive(F) ∼= (0→ R

x−→ R
2−→ R→ 0) = (0→ R

x−→ R
0−→ R→ 0).

By taking x = 1, conclude that S2
naive does not preserve homotopies in this

case.

To construct well-behaved operators in characteristic 2, one needs to use the
Dold-Kan Correspondence; see Remark 4.16 below. For now we stick to the case
when char(k) 6= 2.

2.4. Adams operations. Adams operations were introduced by J. F. Adams in
1962 to study vector bundles on spheres [Ada62]. We are interested in analogues
of these defined on finite free complexes, as developed by Gillet and Soule [GS87].
In all contexts, Adams operations are endomorphisms of Grothendieck groups that
are defined using formal sums of symmetric and exterior powers. I’ll focus mostly
on the second Adams operation, ψ2, but I’ll give some indication of he k-th Adams
operation, ψk, for k > 2.

Definition 2.21. Assume (R,m, k) is a local ring such that char(k) 6= 2. The sec-
ond Adams operation, ψ2, sends a finite free complex F with finite length homology
to the class

ψ2(F) = [S2
naive(F)]− [Λ2

naive(F)] ∈ Kfl
0 (R).

This is indeed a class in Kfl
0 (R) by Proposition 2.19. More generally, the same

formula determines a class in KZ
0 (R) whenever F is a complex supported on Z.

Remark 2.22. See Remark 4.16 for a definition of ψ2 that does not involve any
restriction on the residue characteristic.

Recall S2 and Λ2 are polynomial functors of degree two on the category of finite
free modules, and moreover their first cross effects functors coincide: (S2)′ ∼= (Λ2)′

(both send a pair of free modules (F1, F2) to F1 ⊗R F2). Because of this fact, it
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follows that

ψ2(F1 ⊕ F2) = [S2(F1 ⊕ F2)]− [Λ2(F1 ⊕ F2)]

= [S2(F1)] + [S2(F2)] + [F1 ⊗R F2]− [Λ2(F1)]− [Λ2(F2)]− [F1 ⊗R F2]

= [S2(F1)]− [Λ2(F1)] + [S2(F2)]− [Λ2(F2)]

= ψ2(F1) + ψ2(F2).

That is ψ2 preserves addition of complexes. In fact, more is true:

Exercise 2.23. Show that if 0→ F′ → F→ F′′ → 0 is a short exact sequence (not
necessarily split) of finite free complexes, then

ψ2(F) = ψ2(F′) + ψ2(F′′).

Combining this with Proposition 2.19 proves the first assertion in the following
result. (I will not prove the second assertion).

Proposition 2.24. Let (R,m, k) be a local ring with char(k) 6= 2. The function ψ2

induces a group homomorphism

ψ2 : Kfl
0 (R)→ Kfl

0 (R).

More generally, for any closed subset Z of Spec(R), ψ2 determines a group endo-
morphism of KZ

0 (R) that is multiplicative in the following sense: Given another
closed subset W , tensor product of complexes induces a pairing

KZ
0 (R)⊗Z K

W
0 (R)

−⊗−−−−→ KZ∩W
0 (R)

and for any classes α ∈ KZ
0 (R) and β ∈ KW

0 (R), we have

ψ2(α⊗ β) = ψ2(α)⊗ ψ2(β).

Remark 2.25. In fact, both S2
naive and Λ2

naive determine non-additive operators on
Kfl

0 (R).

Proposition 2.26. Suppose x1, . . . , xm ∈ m are such that R/(x1, . . . , xm) has finite
length and let K = KosR(x1, . . . , xm). Then

ψ2(K) = 2m[K].

Remark 2.27. [K] = 0 if m > dim(R).

Proof. Recall KosR(x1, . . . , xm) = ⊗j KosR(xi). Using (on faith) that ψ is multi-
plicative, we may reduce to the case of showing this for m = 1. In this case, by
Exercise 2.20 we have

ψ2(KosR(x)) = [KosR(x)]− [Σ KosR(x)] = 2 · [KosR(x)].

�

Corollary 2.28. If R is regular of Krull dimension d, then ψ2 acts a multiplication
by 2d on Kfl

0 (R). In particular, χΨ2(F) = 2dχ(F) for all finite free complexes F
having finite length homology.

Proof. This follows from the Proposition and Exercise 2.5. �
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2.4.1. A brief discussion of ψk for k ≥ 3. For k ≥ 2, and provided k! is a unit
in R, one may define the k-th Adams operaration in terms of the “naive” exte-
rior power operators Λ1

naive, · · · ,Λknaive. When k! is not invertible, the Dold-Kan
correspondence needs to be used; see Section 4.1 below.

In detail, when k! is a unit, we set

ψk(F) = Nk(Λ1
naive(F), . . . ,Λknaive(F))

where Nk is the k-th Newton polynomial, defined by the condition that

Nk(s1, . . . , sk) =
∑
i

xki

where s1, . . . , sk are the elementary symmetric polynomials in x1, . . . , xk.
For instance when k = 2, N2(x, y) = x2 − 2y and so

ψ2(F) = [F⊗R F]− 2[Λ2
naive(F)] = [S2

naive(F)]− [Λ2
naive(F)]

with the second equality holding by (2.17).
When k = 3, we have N3(x, y, z) = x3 − 3xy + 3z and so

ψ3(F) = [F⊗R F⊗R F]− 3[F⊗ Λ2
naive(F)] + 3[Λ3

naive(F)].

The operators ψk enjoy the same formal properties as does ψ2. For our purposes
ψ2 turns out to be of much greater value and so we focus on it from now on.

3. Proofs of some of the algebraic rank conjectures

In this section we give proofs of some of the algebraic rank conjectures.

3.1. Proof for quasi-Roberts rings. Assume (R,m, k) is a local ring of dimen-
sion d with char(k) 6= 2. We say R is quasi-Roberts ring if there is an equality
χ ◦ ψ2 = 2d · ψ2 of operators on Kfl

0 (R); that is, if

χ(S2
naive(F))− χ(Λ2

naive(F)) = 2d · χ(F)

for any finite free complex F having finite length homology. (The same definition
applies even if char(k) = 2, but in that case we will need to use the “non-naive”
symmetric and exterior powers; see Remark 4.16 below.)

By Corollary 2.28, regular local rings are quasi-Roberts rings. So are complete
intersection rings — i.e., rings of the form R = Q/(f1, · · · , fc) with Q a regular
local ring and f1, . . . , fc a regular sequence of elements, and a smattering of other
examples; see [Kur01].

Theorem 3.1. [Wal17] Assume (R,m, k) is a quasi-Roberts ring — e.g., regular or
a complete intersection — such that char(k) 6= 2, and let d be its Krull dimension.
For any finite free complex F of R-modules with finite length homology, we have

(3.2) rank(F) · h(F) ≥ 2d · |χ(F)|
In particular, if M is a non-zero R-module of finite length and finite projective
dimension then rank(F) ≥ 2dim(R) for any free resolution F of M .

Proof. The latter assertion follows from (3.2) since h(F) = χ(F) = lengthR(M) 6= 0
in that case.

Let F be any finite free complex with finite length homology. We set-up/recall
some notation:

• heven(F) =
∑
j lengthRH2j(F),
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• hodd(F) =
∑
j lengthRH2j+1(F),

• h(F) = heven(F) + hodd(F) =
∑
i lengthRHi(F), and

• χ(F) = heven(F)− hodd(F) =
∑
i(−1)i lengthHi(F).

The Theorem follows from the pair of Key Inequalities

(3.3) rank(F) · h(F) ≥ h(F⊗R F) ≥ 2d · χ(F),

since we may assume that χ(F) ≥ 0 by replacing F with ΣF if necessary.
Since char(k) 6= 2, 2 is invertible in R and hence from (2.17) we have a natural

isomorphism

F⊗R F ∼= Λ2
naive(F)⊕ S2

naive(F).

This gives the first equality in

h(F⊗R F) = h(S2
naive(F)) + h(Λ2

naive(F))

≥ heven(S2
naive(F)) + hodd(Λ2

naive(F))

≥ χ(S2
naive(F))− χ(Λ2

naive(F))

= χψ2(F)

= 2d · χ(F)

The inequalities are elementary and the final two equalities hold by definition of ψ2

and the fact that we assume R is quasi-Roberts. This establishes the right-hand
inequality of (3.3).

The left-hand inequality in (3.3) is elementary, but I will state it as a lemma
below, since it is needed again later. In detail, the proof of the Theorem is complete
by applying Lemma 3.5 with M = F. �

Remark 3.4. By analyins the proof it is not hard to see that if M is a module of
finite length and finite projective dimension such that and rank(F) = 2d for some

resolution F, then M must be cyclic, i.e., M ∼= R/I, and I/I2 ∼= TorR1 (R/I,R/I)
is free as an R/I-module. The latter implies I is generated by a regular sequence
thanks to a theorem of Ferrand and Vasconcelos; see [BH98, 2.2.8]. Thus, equality
in the Total Rank Conjecture holds for a module M if and only if M is isomorphic
to the ring modulo a regular sequence of parameters.

I owe you:

Lemma 3.5. For any commutative ring R, any finite free complex F, and any
bounded complex M of R-modules having finite length homology, we have

(3.6) h(F⊗E M) ≤ rank(F)h(M).

Exercise 3.7. Prove Lemma 3.5 using one of the following two approaches:

(1) Exploit the spectral sequence

Hi(F⊗R HjM)⇒ Hi+j(F⊗R M)

using also that h(F ⊗ N) ≤ rank(F) length(N) for any module N having
finite length.

(2) Alternatively, proceed by induction on h(M). For the case h(M) use that
we may assume M = k.
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3.2. Extension to dg S-modules. Recall S = k[x1, . . . , xd] for a field k and with
deg(xi) = −2.

Theorem 3.8. [Wal17] Assume char(k) 6= 2. For any semi-free dg S-module F
having finite length homology, we have

rank(F)h(F) ≥ 2d · |χ(F)|.

Moreover, the Total Rank Conjecture for Formal dg Modules holds.

Sketch of Proof. The proof of the first assertion is essentially identical to the proof
of the analogous fact in the local quasi-Roberts ring case.

Since S is a regular ring, the Total Rank Conjecture for Formal dg Modules is
equivalent to the statement that if M is a graded S-module of finite length, then
rank(F) ≥ 2d for the minimal, semi-free dg resolution F of M (regarded as a dg-S-
module with trivial differential). Since S is concentrated in even degrees, one easily
reduces to the case when M is either concentrated in even degrees or concentrated
in odd degrees. In this case h(F) = h(M) = |χ(M)| = |χ(F)|. �

Exercise 3.9. Complete the details of this proof by making suitable modifications
to the proof of Theorem 3.1.

3.3. Proof in characteristic p ≥ 3. Recall the bilinear pairing

χ(−,−) : Kfl
0 (R)⊗Z G0(R)→ Z.

determined by χ(F,M) = χ(F ⊗R M). It will be convenient to tensor Q to make
this a bilinear pairing of Q-vector spaces:

χ(−,−) : Kfl
0 (R)Q ⊗Q G0(R)Q → Q

where Kfl
0 (R)Q := Kfl

0 (R)⊗Z Q and G0(R)Q := G0(R)⊗Z Q.
A key property is the following:

Theorem 3.10. Assume (R,m, k) is a local ring of dimension d that is isomorphic
to the quotient of a regular local ring. (The latter holds, for instance, if R is
complete.) Then there is an internal direct sum decomposition of the rational vector
space G0(R)Q of the form

(3.11) G0(R)Q =

dim(R)⊕
i=0

G0(R)(i)

with the following properties:

(1) For any class α ∈ K0(R)Q and β ∈ G0(R)(i) we have

χ(ψ2α, β) = 2i · χ(α, β).

(More gennerally, χ(ψkα, β) = kiχ(α, β).)
(2) For any m, the subspace

⊕m
i=0G0(R)(i) coincides with the subspace of

G0(R)Q generated by classes of finitely generated modules M such that
dim(M) ≤ m.

(3) When char(R) = p, R is complete, and k is a perfect field, we have G0(R)(i) =

ker(φ∗ − pi) where φ∗ is the operator on G0(R)Q induced by restriction of

scalars along the Frobenius map φ : R
r 7→rp−−−→ R. (This map is module-finite

by out assumptions on R.)
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Proof. I just give the basic idea: If R = Q/I with Q regular local, then the map
sending a finitely generated R-module M to a chosen free resolution over Q induces
an isomorphism

(3.12) G0(R) ∼= K
V (I)
0 (Q),

with the target being the Grothendieck group of finite free complexes F supported

on V (I) = {q ∈ Spec(R) | q ⊇ I}. Now, K
V (I)
0 (R) admits Adams operations, ψk for

k ≥ 2, defined in the same way as for Kfl
0 (R) = K

{m}
0 (R) — see [GS87]. Moreover,

as proven in [GS87], since Q is regular, for any k ≥ 2, we get a decomposition

K
V (I)
0 (Q)Q =

c⊕
j=0

K
V (I)
0 (Q)(j)

where c = dim(Q)− dim(R) and K
V (I)
0 (Q)(j) = ker(ψk − kj), the eigenspace of ψk

of eigenvalue kj . This determines the decomposition on G0(R)Q — specifically, we

set G0(R)(i) to be the subspace corresponding to K
V (I)
0 (R)(dim(Q)−i) under (3.12).

The desired properties hold because the pairing −∩̃− : Kfl
0 (R)Q ⊗Q K

V (I)
0 (Q)Q →

Q determined by (3.12) and χ(−,−) satisfies ψk(α)∩̃ψk(β) = kdim(Q)(α∩̃β); see
[Wal21, Lemma 4.5]. �

Remark 3.13. There is an isomorphism τ : G0(R)(i)

∼=−→ CHi(R) ⊗Z Q, the ratio-
nalized Chow group of dimension i cycles on Spec(R).

Given β ∈ G0(R), there is a unique decomposition β =
∑
i β(i) with β(i) ∈

G0(R)(i), and we have χ(ψ2α, β) =
∑
i 2iχ(α, β(i)). In particular, β = β(j) for

some j (i.e., β(i) = 0 for all i 6= j) if and only if χ(ψ2α, β) = 2jχ(α, β) In general it
is not easy to calculate the components β(i) of a class β, but there is one exception:

Lemma 3.14. For a domain R, the map taking a finitely generated R-module to

its rank induces an isomorphism G0(R)(d)

∼=−→ Q.

Exercise 3.15. Prove Lemma 3.14 using the second property in Theorem 3.10 and
the following “localization” exact sequence for G-theory: the sequence⊕

f 6=0

G0(R/f)→ G0(R)→ G0(F )→ 0

(with the maps being the canonical ones) is exact, where F is the field of factions
of R.

Example 3.16. When R is regular local, we have G0(R) ∼= K0(R) ∼= Z, generated
by the class [R]. In this case G0(R)(i) = 0 unless i = d, in which case it is all of
G0(R)Q. In particular, [R] ∈ G0(R)(d). Since χ(F, R) = χ(F), we have

χ(ψ2F) = 2d · χ(F).

That is, R is quasi-Roberts, as noted before.
This formula holds, more generally, for a local ring R for which [R] happens to

be equal to [R](d) (or, equivalently, [R](i) = 0 for all i 6= d). Such rings are known
as Roberts rings — see [Kur01] for examples. (Every Roberts ring is quasi-Roberts,
but the converse can fail since χ(α, [R](i)) can be 0 for all α even if [R](i) 6= 0.)

Theorem 3.17. Let (R,m, k) be a local ring of dimension d such that char(k) 6= 2.
Suppose there is a non-zero R-module M with the following properties
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(1) M is Maximum Cohen-Macaulay (MCM) — this means there exists a se-
quence x1, . . . , xd ∈ m that is M -regular; i.e., Hi(KosR(x1, . . . , xd)⊗RM) =
0 for i ≥ 1.

(2) [M ] ∈ G0(R)Q is pure of weight d.

Then the Total Rank Conjectures 1.12 holds for R.

Proof. The proof may be viewed as a generalization of the proof of Theorem 3.1;
by taking R = M in this proof, we will recover that proof.

Let F be an arbitrary finte free complex with finite length homology. The Key
Inequalities for this proof are

(3.18) rank(F) · h(F⊗RM) ≥ h(F⊗R F⊗RM) ≥ 2d · χ(F⊗RM).

The left inequality follows from Lemma 3.5 above (and it uses none of the assump-
tion on M). The right one follows from

h(F⊗R F⊗RM) = h(S2
naive(F)⊗RM) + h(Λ2

naive(F)⊗RM)

≥ heven(S2
naive(F)⊗RM) + hodd(Λ2

naive(F)⊗RM)

≥ χ(S2
naive(F)⊗RM)− χ(Λ2

naive(F)⊗RM)

= χ(ψ2(F),M)

= 2d · χ(F,M)

which is justified in exactly the same was as in the proof of Theorem 3.1 — the last
inequality uses that [M ] is pure of weight d by assumption.

Now assume F is a non-trivial tiny complex. Since M is MCM and F is tiny, a
standard argument (see the exercise below) shows that F⊗RM only has homology
in degree 0; i.e., Hi(F⊗RM) = 0 for all i 6= 0. Thus

χ(F⊗RM) = h(F⊗RM) = lengthH0(F⊗RM) = length(H0(F)⊗RM) 6= 0.

and so the result follows from (3.18). �

Exercise 3.19. Show that if F is tiny and M is an MCM module, then Hi(F ⊗R
M) = 0 for all i 6= 0. Tip: Consider the bicomplex F ⊗R C ⊗R M where C is the
“algebraist’s” Cech complex on a system of parameters x1, . . . , xd ∈ m of R:

C = (0→ R→
⊕
i

R

[
1

xi

]
→
⊕
i<j

R

[
1

xixj

]
→ · · · → R

[
1

x1 · · ·xd

]
→ 0).

You may use that M is MCM if and only if C ⊗R M has homology only in the
right-most position. (The homology of C⊗RM gives H∗m(M), the local cohomology
of M supported at the maximal ideal.)

Unfortunately, I know of few examples, outside of the case when R is a CM
quasi-Roberts ring, when such an M as in Theorem 3.17 exists. However, an
analysis of the proof of this theorem reveals that we just need a sequence of modules
M1,M2, · · · that “asymptotically” satisfy these properties. Let me explain.

To simplify the exposition, let us assume that R is an integral domain for the
rest of this section (but that is not needed).

Definition 3.20. Assume (R,m, k) is local domain of dimension d. Let {Mj} =
M1,M2, . . . be a sequence of finitely generated R-modules such that rankR(Mj) > 0
for all j.
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• We say {Mi} is lim MCM if

lim
j→∞

lengthHi KosMj (x1, . . . , xd)

rankR(Mj)
= 0 for all i > 0

for some (equivalently, any) system of parameters x1, . . . , xd of R.
• Such a sequence is lim of pure weight d if

lim
j→∞

[Mj ](i)

rankR(Mj)
= 0 for all 0 ≤ i < d.

Here, for a finitely generated module M , we write [M ](i) denote the compo-
nent of [M ] ∈ G0(R)Q in the summand G0(R)(i) under the internal direct
sum decomposition given in Theorem 3.10. The limit here should be in-
terpreted as occurring with the finite subspace topology on the (possibly
infinite dimensional) Q-vector space G0(R)(i).

Remark 3.21. When R is a domain, [M ](d) = rank(M)[R](d) and so, if we allowed
i = d in the definition of lim of pure weight d, the limit would be [R](d).

The main example of sequences satisfying both definitions is the following:

Example 3.22. Suppose char(R) = p > 0 and assume R is a complete domain
with perfect residue field. Let Mj denote R regarded as an R-module via restriction

of scalars along the j-th iterate, φj : R
r 7→rp

j

−−−−→ R, of the Frobenius endomorphism.
Then {Mj} is lim CM by [Hoc17, Theorem 5.1].

It is also lim of pure weight d. To show this, we use that φj∗ acts on G0(R)(i) ⊆
G0(R)Q as multiplication by 2ij ; see Theorem 3.10 (3). We have [R] =

∑
i[R](i)

and so

[Mj ] = φj∗[R] =
∑
i

2ji[R](i).

which gives

[Mj ](i) = 2ji[R](i).

In particular, rank(Mj) = 2dj . So, for 0 ≤ i < d we have

lim
j→∞

[Mj ](i)

rankR(Mj)
= lim
j→∞

2ji

2dj
[R](i) = 0 · [R](i) = 0.

Theorem 3.23. Assume (R,m, k) is a local domain and char(k) 6= 2. If R admits
a sequence {Mj} that is both lim MCM and lim of pure weight d = dim(R), then
the Total Rank Conjecture 1.12 holds for R.

Proof. The proof is basically the same as the proof of Theorem 3.17, using limits
as needed. �

Corollary 3.24. The Total Rank Conjecture holds for any local ring of character-
istic p ≥ 3.

Proof. A standard argument allows us to reduce to the case when R is complete with
perfect residue field. By modding out by a minimal prime p such that dim(R/p) =
dim(R), we may assume R is a domain. (Note that even if we start with F being
the resolution of a module, F/pF might not be a resolution, but it remains tiny.)
Then the result follows from the theorem and Example 3.22. �
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3.3.1. Extension to char 0. Theorem 3.1 and 3.17 give that the Total Rank Conjec-
ture holds for any local ring that is an algebra over a field k of positive characteristic.
We also have:

Theorem 3.25 (VandeBogert-W). [VW24] The Total Rank Conjecture holds for
any local ring that is an algebra over a field of characteristic 0.

Sketch of Proof. A well-worn technique, sometimes known as “Hochster’s Meta-
Theorem” [Hoc75] allows one to reduce to the prime characteristic case. I only
give the vague idea: Suppose R is an algebra over a field of characteristic 0 and F
is a hypothetical counter-example ot the Total Rank Conjeture. Then, for all but
a finite number of prime intergers p, one may construct a ring Rp and finite free
Rp-complex Fp such that char(Rp) = p and “all relevant properties” are preserved:

dim(Rp) = dim(R), lengthRp
Hi(Fp) = lengthRHi(F) for all i, and rank

Rp

i (Fp) =

rankRi (F) for all i. Since the TRC holds for Rp, this is not possible. �

3.4. Counter-examples to the TRC for Complexes. Recall that the Total
Rank Conjecture for Complexes predicts that β(F) ≥ 2d whenever F is a (not
necessarily tiny) finite free complex with finite length, non-zero homology. We
present counter-examples, discovered by Iyengar and myself [IW18], that arise even
in the very nice situation in which R is a regular local ring. All our counter examples
do require that the residue characteristic is not 2, however.

For simplicity, let us take R = k[[x1, . . . , xd]] with k a field of characteristic 6= 2.
Recall from Theorem 3.1 that

rank(F) ≥ 2d · |χ(F)|
h(F)

.

Thus, an obvious place to look for a counter example to the Total Rank Conjecture
for Complexes is complexes with χ(F) = 0, and these are easy to come by:

Start with the Koszul complex K = KosR(x1, . . . , xd), which resolves k in this
case, and pick an endomorphism g of K of degree −2. In other words, take a chain
map g : Σ−1K→ ΣK. Now set F = cone(g). This gives a short exact sequence

0→ ΣK→ F→ K→ 0

of complexes with finite length homology. It follows that [F] = 0 in Kfl(R), whence
χ(F) = 0.

To calculate the Betti numbers of F, we use that

0→ HomR(K, k)→ HomR(F, k)→ Σ−1 HomR(K, k)→ 0

is exact and HomR(K, k) ∼ Λk(e∗1, . . . , e
∗
d) with e∗i of cohomological degree 1. This

gives the long exact sequence
(3.26)
· · · → Λj−1(e∗1, . . . , e

∗
d)→ Λj+1(e∗1, . . . , e

∗
d)→ Hj HomR(F, k)→ Λj(e∗1, . . . , e

∗
d)→ Λj+2(e∗1, . . . , e

∗
d)→ · · · .

In particular, the ranks of the maps Λ∗(e∗1, . . . , e
∗
d) → Λ∗+2(e∗1, . . . , e

∗
d) determine

the Betti numbers βi(F) = dimk Homi
R(F, k) of F. (Recall β(F) = rank(F) where F

is a minimal complex homotopy equivalent to F.)
Now, the homotopy class of such a g is represented by an element

q ∈ H2(EndR(F)) ∼= H2(HomR(F, k)) = Λ2(e∗1, . . . , e
∗
d).
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and it is not difficult to see that the map Λ∗(e∗1, . . . , e
∗
d)→ Λ∗+2(e∗1, . . . , e

∗
d) occur-

ring in (3.26) is multiplication by q. Specifically we take

q = e∗1e
∗
2 + e∗3e

∗
4 + · · ·+ e∗d−1e

∗
d.

(Recall we assume d is even.)

Example 3.27. A toy example: Take d = 2, so that g is the map associated to
q = e∗1e

∗
2. Then F is the totalization of the complex

0 0 0 R1 R2 R1 0

0 R1 R2 R1 0 0 0.

=

Note it is not minimal, and its minimization has the form

F = (0→ R1 → R2 → R2 → R1 → 0).

Example 3.28. For d = 4, F is the totalization of

0 0 0 R1 R4 R6 R4 R1 0

0 R1 R4 R6 R4 R1 0 0 0

=

and its minimization is

F = (0→ R1 → R4 → R5 → R5 → R4 → R1 → 0).

Lemma 3.29. [IW18, 2.1] With the notation above, assume d is even and set

q =
∑d/2
i=1 e

∗
2i−1e

∗
2i. Provided char(k) = 0 or char(k) > d

4 + 1
2 the map

q : Λj(e∗1, . . . , e
∗
d)→ Λj+2(e∗1, . . . , e

∗
d)

has full rank — i.e., it is injective for j ≤ d/2− 1 and surjective for j ≥ d/2− 1.

Consequently, we have:

Proposition 3.30. [IW18] The minimal complex F constructed above has the fol-
lowing properties:

• It is a non-trivial finite free complex — in fact, Hi(F) = k for i = 0 or
i = 1 and Hi(F) = 0 for all other values of i.
• F is concentrated in degrees [0, d+ 1].

• rank(F) =
(
d+2
d
2 +1

)
.

In particular, when d ≥ 8 and char(k) = 0 or char(k) > d
4 + 1

2 , the Total Rank
Conjecture for Complexes is false for R = k[[x1, . . . , xd]].

Exercise 3.31. Deduce Proposition 3.30 from Lemma 3.29.

Very similar constructions give the next two results.

Proposition 3.32. [IW18] The Total Rank Conjecture for dg Modules is false.
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These counter-examples do not imply the Toral Rank Conjecture is false, how-
ever, since the examples cannot possibly “come from topology” as they are not
dgas.

Proposition 3.33. [IW18] The Algebraic Version of Carlsson’s Conjecture 1.24 is
false when char(k) 6= 2 and n ≥ 8.

Exercise 3.34. Prove Proposition 3.33 in the case when n ≥ 8 is even, as follows:
Recall R = k[x1, . . . , xn]/(xp1, . . . , x

p
n) with char(k) = p. Let K = KosR(x1, . . . , xn).

(1) Show H∗(K) is an exterior algebra over k generated by H1(K) ∼= kn.
(2) Let z ∈ K2 be a cycle representing the class of an element q ∈ H2(K) as in

Lemma 3.29, and set F to be the cone of multiplication by z. Show F is a
counter-example by applying Lemma 3.29.

As with the previous counter-examples, these do not show the original Carlsson’s
Conjecture 1.23 is false — Rüping and Stephan [RS22] have shown that these
counter-examples do not come from the action of a p-torus on a space.

4. Characteristic two

In this section we discuss what is known about the various Rank Conjectures
when the characteristic of the ring is 2. This is the most interesting case, since none
of the proofs given so far, and none of the counter-examples presented so far, have
anything to say about the characteristic 2 case. Assume henceforth that (R,m, k)
is a local ring with char(R) = 2. An important ingredient in this case will be the
Dold-Kan Correspondence.

4.1. Dold-Kan Correspondence. For n ∈ Z≥0, set [n] to be the totally ordered
finite non-empty set

[n] := {0, 1, . . . , n}.
Define Ord to be the category with objects [n], for n ≥ 0, and morphisms given by
order preserving functions:

HomOrd([n], [m]) = {f : [n]→ [m] | i ≤ j ⇒ f(i) ≤ f(j)}.
A simplicial object in a category C is a contravariant functor X : Ord→ C.

In concrete terms, a simplicial object X is a sequence of objects X0, X1, . . . of
C together with face morphism dj : Xn+1 → Xn, for 0 ≤ j ≤ n, corresponding to
the unique injection δj : [n] ↪→ [n + 1] that “skips j” and degeneracy morphism
sj : Xn → Xn+1, for 0 ≤ j ≤ n, is corresponding to the unique surjection σj :
[n+1] � [n] that “repeats j”. These face and degeneracy maps satisfy the following
simplicial identities:

didj = dj−1di if i < j

sisj = sjsi−1 if i > j

disj =


sj−1di if i < j

id if i = j or i = j + 1

sjdi−1 if i > j + 1

Simplicial objects in C form a category in which a morphism is given by a natural
transformation of functors from Ordop to C or, equivalently, by a sequence of mor-
phisms fn : Xn → Yn, n ≥ 0 in C that commute with the face and degeneracy maps
for simplicial objects X• and Y•.
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A simplicial homotopy joining a pair of simplicial maps f, g : X• → Y• between
two simplicial objects X• and Y• is a collection of morphisms hn : Xn → Yn+1 for
n ≥ 0 such that the following identities hold:

(4.1)

d0hn = fn for all n ≥ 0

dn+1hn = gn for all n ≥ 0

dihj =


hj−1di, i < j

dihi−1, i = j 6= 0

hjdi−1, i > j + 1

sihj =

{
hj+1si, i ≤ j
hjsi−1, i > j

The details of these equations do not matter, except to note that a simiplicial
homotopy involves only equalities of compositions of functions.

Let us now focus on the case of simplicial R-modules; i.e., the case C = Mod(R).
Attached to a simplicial R-module, we have its associated normalized chain complex
N(X), defines by

N(X)n = ∩ni=1 ker(di : Xn → Xn−1) ⊆ Xn

with differential ∂ : N(X)n → N(X)n−1 given as the restriction of d0. The simpli-
cial identities imply that N(X) really is a chain complex.

There is also a functor taking non-negative chain complexes of R-modules to
simplicial modules: Given such a complex

M = (· · · ∂2−→M1
∂1−→M0 → 0)

we set

K(M)[n] =
⊕

f :[n]�[d]

Md

I omit the rules for the face and degeneracy maps, but give an example:

Example 4.2. If F = (0→ G
α−→ F → 0) in degrees 0 and 1, then K(F) is a “bar

construction”: K(F)n = F ⊕G⊕n with face maps

dj(f, g1, . . . , gn) =


(f + α(g1), g2, . . . , gn) for j = 0,

(f, g1, . . . , gj + gj+1, . . . , gn) for 1 ≤ j ≤ n− 1, and

(f, g1, . . . , gn−1) for j = n.

The key point about the constructions presented here is:

Theorem 4.3 (Dold-Kan). [Dol58] The functors N and K are mutually inverse,
exact equivalences joining the category of non-negative chain complexes of R-modules
with the category of simplicial R-modules. Moreover, chain homotopies correspond
to simplicial homotopies.

4.1.1. Extending functors to complexes. Given a (not necessarily additive!) functor
T sending finite free modules to finite free modules, we extend it to a functor on
non-negative free complexes by translating to the simplicial setting. In detail, given
a finite free complex F with Fi = 0 for i < 0, we set

T̃ (F) := N(T∗(K(F)))
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where T∗ denotes the application of T degreewise to a simplicial module: T∗(X•) :
[n] 7→ T (Xn).

Corollary 4.4. The functor T̃ preserves chain homotopies.

Proof. The crucial point here is that a simplicial homotopy (see (4.1)) involves only
equalities of compositions, and not addition or subtraction (in contrast with a chain
homotopy). Thus, every functor preserves simplicial homotopies, and the corollary
follows from the Dold-Kan theorem. �

Here are some additional properties:

Proposition 4.5. [DP61, 4.7 and Hilfssatz 4.23] Assume T is a polynomial functor

of degree n defined on finite rank free R-modules, and let T̃ denote its extension to
non-negative, finite free complexes using the Dold-Kan Theorem. Then

(1) If F is a finite free complex concentrated in degree [0,m], then T̃ (F) is a
finite free complex concentrated in degrees [0, n ·m].

(2) The assignment T 7→ T̃ is exact: if 0 → T ′ → T → T ′′ → 0 is an exact

sequence of natural transformations of such functors, then so is 0→ T̃ ′ →
T̃ → T̃ ′′ → 0.

(3) If n = 1 (i.e., T is additive), then T̃ (F) ∼= Tnaive(F) := (0→ T (Fm)
T (∂m)−−−−→

· · · T (∂1)−−−→ T (F0)→ 0).

(4) If T “localizes well” (e.g., Tn, Λn, Sn, and Frob), then T̃ preserves support,

in the sense that Fp ∼ 0 ⇒ T̃ (F)p ∼ 0. In particular, if the homology of F
has finite length, then so does the T̃ (F).

We will apply this construction using the examples T = Tn (i.e., T (F ) =
n times︷ ︸︸ ︷

F ⊗R · · · ⊗R F ), T = ΛnR, T = SnR, and, when char(R) = p > 0, T = Frob,

extension of scalars along the Frobenius map φ : R
r 7→rp−−−→ R. Recall that each of

these is a polynomial functor (and the last one is additive).

Example 4.6. It so happens that Tn and T̃n concide up to natural quasi-isomorphism:

Tn(F) ∼ T̃n(F)

for any finite free complex F. (But they are not isomoprhic.) This equivalence is
given by the shuffle map and the Alexander-Whitney map; see [BMTW17, §5] for
more details.

Example 4.7. In general, Λn(F) and Λ̃n(F) fail to be quasi-isomorphic, and like-

wise for Sn(F) and S̃n(F) fail to be quasi-isomorphic. See Exercise 2.20.

Example 4.8. When char(R) = p > 0, Frob is additive and thus F̃rob ∼= Frob.
We note that if

F = (· · · B−→ Rn
A−→ Rm → 0)

for matrices A,B, · · · , then

Frob(F) ∼= (· · · B
[p]

−−→ Rn
A[p]

−−→ Rm → 0)

where A[p], B[p], . . . denotes raises each entry of these matrices to the p-th power.
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The following proposition summarizes what we need from the Dold-Kan Theo-
rem:

Proposition 4.9. For any R and finite free complex of R-modules F, we have a
natural short exact sequence

(4.10) 0→ Λ̃2(F)→ T̃ 2(F)→ S̃2(F)→ 0

of complexes, a natural quasi-isomorphism

(4.11) T̃ 2(F) ∼ F⊗R F,

and hence a natural long exact sequence

(4.12) · · · → HjΛ̃2(F)→ Hj(F⊗R F)→ Hj S̃
2(F)

∂−→ Hj−1Λ̃2(F)→ · · ·

of R-modules.
When char(R) = 2, we also have a natural short exact sequence

(4.13) 0→ F̃rob(F)→ S̃2(F)→ Λ̃2(F)→ 0

of complexes, a natural isomorphism

(4.14) F̃rob(F) ∼= Frob(F),

and hence a natural long exact sequence

(4.15) · · · → Hj Frob(F)→ Hj S̃
2(F)→ HjΛ̃2(F)

∂−→ Hj−1 Frob(F)→ · · · .

of R-modules.

Proof. The exact sequences of complexes (4.10) and (4.13) follow from Proposition
4.5 (2), using the exact sequences given in (2.11) and Proposition 2.14. The quasi-
isomorphism (4.11) was discussed in Example 4.6 and the isomorphism (4.14) holds
since Frob is additive (see Example 4.8). The existence of the two long exact
sequences follows. �

Remark 4.16. Though not really needed in these notes, the Dold-Kan Theorem
allows us to deinfe the “non-naive” Adams operations ψk on Kfl

0 (R), and more
generally on KZ

0 (R), without any restriction on the characteristic. For instance,
given a finite free complex F concentrated in non-negative degrees, we set

ψ2(F) := [S̃2(F)]− [Λ̃2(F)].

For complexes with negative components, one applies this formula after shifting it
and introducing an appropriate sign.

The operators ψk have all the same formal properties as their naive counterparts
do, but are defined in full generality. For instance, if R is regular local ring or, more
generally, a complete intersection, then ψk ◦ χ = 2d · χ on Kfl

0 (R).
See [GS87] for more details.
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4.2. Toral Rank Conjectures in char 2. In this section I discuss joint work
with Keller VandeBogert on rank conjectures for local ring R with char(R) = 2.

Theorem 4.17. [VW24] Suppose R is a local ring of characteristic 2 and dimension
d. If F is a finite free complex of the form

0→ Fd+1 → · · · → F0 → 0

having non-zero, finite length homology, then rank(F) ≥ 2d. In particular, the Total
Rank Conjecture for holds for R.

Remark 4.18. The Theorem also shows that the kinds of counter-examples for the
Total Rank Conjecture for Complexes found by Iyengar and myself do not exist in
char 2.

Proof. It is not difficult to reduce to the case when R is complete with perfect
residue field (but I omit the details) and so let us assume R has these properties.

I will prove the result in detail in the very special (but still very interesting!)
case in which R is regular. Since we assume R is complete with perfect residue
field, we have R = k[[x1, . . . , xd]] with k perfect. After giving the proof in this case,
I will then indicate roughly how the proof generalizes.

The fact that R is regular, complete, with perfect residue field gives several
desirable properties:

• The homology of F must lie in degrees 0 and 1 only. (This is true more
generally for any CM ring.)
• The Frobenius map is flat. (This holds only when R is regular by a theorem

of Kuntz [Kun69]).
• We have length(Frob(M)) = 2d length(M) for any R-module M of finite

length. (This uses that k is perfect, so that the Frobenius endomorphisms
is an automorphism on the coefficients and sends xi to xpi . Thus Frob(k) ∼=
R/(x2

1, . . . , x
2
d), which is easily seen to have dimension 2d, and the general

result follows. )

These three properties give that
(4.19)
Hi(Frob(F)) = 0 for i ≥ 2 and lengthHi(Frob(F)) = 2d · lengthHi(F) for i = 0, 1.

Since rank(F)h(F) ≥ h(F⊗R F) by Lemma 3.5, we just need to prove

(4.20) h(F⊗R F) ≥ 2d · h(F).

We establish (4.20) by playing the long exact sequences in homology (4.12) and
(4.15) off of each other. We note in passing that (4.12) exists also when char(k) 6= 2
(and in that case we may use the “naive” versions Λ2 and S2). The boundary map
∂ is zero in that case but, importantly, when char(k) = 2, this boundary map is
often non-zero. (If it were zero the proof in the case char(k) 6= 2 would apply.)

By (4.19), Hi(Frob(F)) = 0 for i ≥ 2, and hence (4.13) gives isomorphisms

(4.21) Hj(S̃
2(F)) ∼= Hj(Λ̃2(F)) for all j ≥ 3

and an exact sequence

(4.22)
0→ H2(S̃2(F))→ H2(Λ̃2(F)→ Frob(H1(F))→ H1(S̃2(F))→ H1(Λ̃2(F)

→ Frob(H0(F))→ H0(S̃2(F))→ H0(Λ̃2(F)→ 0.
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From (4.12) we obtain the first equality in
(4.23)

h(F⊗R F) =
∑
j

length(ker(Hj S̃
2(F)

∂−→ Hj−1Λ̃2(F))) +
∑
j

length(coker(Hj S̃
2(F)

∂−→ Hj−1Λ̃2(F)))

≥
∑
j

∣∣∣hj S̃2(F)− hj−1Λ̃2(F))
∣∣∣

≥ h0S̃2(F)

+ h1S̃2(F)− h0Λ̃2(F))

− h2S̃2(F) + h1Λ̃2(F))

− h3S̃2(F) + h2Λ̃2(F))

− h4S̃2(F) + h3Λ̃2(F))

− · · ·

= h0S̃2(F) + h1S̃2(F)− h0Λ̃2(F)− h2S̃2(F) + h1Λ̃2(F) + h2Λ̃2(F).

The inequalities are elementary, and last equality is a consequence of (4.21). By
(4.22) we have

h0 Frob(F) ≤ h0S̃2(F)− h0(̃Λ2(F)) + h1(̃Λ2(F))

and

h1 Frob(F) ≤ h2(̃Λ2(F))− h2S̃2(F) + h1S̃2(F).

Combining these with (4.23) gives

h(Frob(F)) ≤ h(F⊗F F)

Finally, by (4.19) we have h(Frob(F)) = 2dh(Frob(F), which gives (4.20) and com-
pletes the proof in the regular case.

I give only the vague idea of the proof for the general case: for an arbitrary R
(still assumed complete with perfect residue field), the key properties (4.19) that
hold in the regular case remain valid asymptotically, upon repeated application
of the Frobenius endomorphism. By taking suitable limits, essentially the same
argument given here in the regular case works in general. �

4.3. Carlsson’s Conjecture in char 2. The same proof technique used in the
previous section gives a mildly interesting result regarding Carlsson’s conjecture:

Theorem 4.24. [VW24] Let

F = (0→ Fm → · · · → F1 → F0 → 0)

be a non-trivial, finite free complex over R = k[x1, . . . , xn]/(x2
1, . . . , x

2
n) with char(k) =

2. If m ≤ 1 then h(F) := dimkH(F) ≥ 2n and if m = 2 then h(F) ≥ 2n−1.

Remark 4.25. When m = 0, this is obvious, since dimk(R) = 2n. When m = 1 this
was proven originally by Adem-Swan [AS95, Corollary 2.1].

Sketch of Proof. I’ll sketch the proof when m = 2. The key inequality is

(4.26) rank(F) · h(F) ≥ h1(Frob(F)).
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To deduce the result from (4.26), we observe that for any finite free complex F, if
χ(F) 6= 0, then h(F) ≥ 2d, since h(F) ≥ |χ(F)| and χ(F) =

∑
i(−1)i2d rank(Fi) is a

multiple of 2d. So, we may assume χ(F) = 0; i.e. that h1(F) = h0(F) + h2(F) and
rank(F1) = rank(F0) + rank(F2). We may also assume that F is minimal. Since
the Frobenius map sends xi to 0 for all i and F is minimal, Frob(F) has trivial
differential, and hence h1(Frob(F)) = dimk F1 = 2n · rank(F1). From (4.26) we thus
get

h(F) ≥ 2n
rank(F1)

rank(F)
= 2n

rank(F1)

rank(F0) + rank(F1) + rank(F2)
= 2n

rank(F1)

2 rank(F1)
= 2n−1.

To establish (4.26), since m = 2, we have Hi(Frob(F)) = 0 for i ≥ 3 and thus

the long exact sequence (4.15) gives Hi(S̃
2(F)) ∼= Hi(Λ̃2(F)) for i ≥ 3. Using this

and the long exact sequence (4.12) one may deduce that

h(F⊗R F) ≥ h1(S̃2(F)) + h2(Λ̃2(F)).

Using (4.15) again gives

h1(S̃2(F)) + h2(Λ̃2(F)) ≥ h1(Frob(F)).

Since rank(F) · h(F) ≥ h(F⊗R F) by Lemma 3.5, this establishes (4.26). �

Remark 4.27. The same ideas in this proof show that if F = (0 → Fd+2 → · · · →
F1 → F0 → 0) is a finite free complex over a local ring of dimension d such that
χ(F) = 0, then

rank(F) ≥ 2d−1.
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[GS87] Henri Gillet and Christophe Soulé, Intersection theory using Adams operations, In-

ventiones mathematicae 90 (1987), no. 2, 243–277.

[Har79] Robin Hartshorne, Algebraic vector bundles on projective spaces: a problem list,
Topology 18 (1979), no. 2, 117–128.



TACKLING RANK CONJECTURES 29

[Hoc75] Melvin Hochster, Topics in the homological theory of modules over commutative

rings, Conference Board of the Mathematical Sciences Regional Conference Series

in Mathematics, No. 24, Published for the Conference Board of the Mathematical
Sciences by the American Mathematical Society, Providence, R.I., 1975, Expository

lectures from the CBMS Regional Conference held at the University of Nebraska,

Lincoln, Neb., June 24–28, 1974. MR 0371879
[Hoc17] , Homological conjectures and lim Cohen-Macaulay sequences, Homological

and computational methods in commutative algebra, Springer INdAM Ser., vol. 20,

Springer, Cham, 2017, pp. 173–197. MR 3751886
[IW18] Srikanth B. Iyengar and Mark E. Walker, Examples of finite free complexes of small

rank and small homology, Acta Math. 221 (2018), no. 1, 143–158. MR 3877020

[Kun69] Ernst Kunz, Characterizations of regular local rings of characteristic p, Amer. J.
Math. 91 (1969), 772–784. MR 252389

[Kur01] Kazuhiko Kurano, On Roberts rings, J. Math. Soc. Japan 53 (2001), no. 2, 333–355.
MR 1815138

[Rob89] Paul Roberts, Intersection theorems, Commutative algebra (Berkeley, CA, 1987),

Math. Sci. Res. Inst. Publ., vol. 15, Springer, New York, 1989, pp. 417–436.
MR 1015532
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