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Abstract

These are the extended lecture notes for the masterclass on “Rank Conjectures Across
Algebra and Topology”, which took place in June 24-28, 2024 at the University of Copen-
hagen. This is a survey/summary of known results on the topic from various published
articles and books cited in the text. No originality is claimed. Last section is based on
the joint work with Okutan.
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1 Rank Conjectures for Free Actions: A Survey

Let G be a finite group and X be a CW-complex with a G-action on it. We say the action is
cellular if G acts by permuting the cells in X. We also assume that G acts on X in such a
way that if an element g ∈ G fixes a cell, then it fixes it pointwise. The action is said to be
free if for every element x ∈ X, the isotropy subgroup Gx = {g ∈ G | gx = x} is the trivial
subgroup. In 1944, Smith proved the following theorem:

Theorem 1 (Smith [31]). Let G be a finite group and p be a prime number. If G acts freely
and cellularly on a finite-dimensional CW-complex X which has the mod-p homology of an
n-sphere, then G does not include Z/p× Z/p as a subgroup.

Smith proved this result by showing that if G admits such an action then the mod-p
group cohomology of G is periodic, i.e., there is a d ≥ 1 such that Hn(G;Fp) ∼= Hn+d(G;Fp)
for all n ≥ 0. An easy argument in group cohomology shows that then G does not include
Z/p× Z/p as a subgroup. We discuss Smith’s theorem in detail in Section 2.4.

In 1957 Conner [14] extended Smith’s result to free actions on a product of two equal
dimensional spheres Sn × Sn using the associated Borel fibration (see Section 3.1 for a def-
inition). He proved that if G acts freely on a finite-dimensional CW-complex X which has
mod-p homology of Sn×Sn, then G does not include Z/p×Z/p×Z/p as a subgroup. Later
Heller [17] extended Conner’s result further to a product of two spheres Sn × Sm with ar-
bitrary dimensions. In his proof Heller uses Tate cohomology and assumes only that X has
mod-p homology of Sn × Sm.

Motivated by Smith, Conner, and Heller’s results, the following conjecture has been made:

Conjecture 2 (Rank Conjecture for (Z/p)r-actions). If G = (Z/p)r acts freely on X =
Sn1 × · · · × Snk , then r ≤ k.

In the above statement X is a topological space homeomorphic to Sn1 × · · · × Snk , and
G acts on X with a continuous map G×X → X. The assumption on X can be replaced by
other assumptions depending on what kind of tools we want to use. For example, one can
assume that X is a smooth manifold diffeomorphic to Sn1 × · · ·×Snk with smooth G-action,
or X is a Z(p)-homological manifold. In the light of above results the expectation is that the
conjecture may hold under much weaker homological assumptions on X. In the known results
on rank conjecture, one generally assume X is a finite or finite-dimensional G-CW-complex
such that

1. X is homotopy equivalent to Sn1 × · · · × Snk , or

2. H∗(X;R) ∼= H∗(Sn1 × · · · × Snk ;Fp) as Steenrod algebras, or

3. H∗(X;R) ∼= H∗(Sn1 × · · · × Snk ;R) as R-algebras where R = Z(p) or Fp, or

4. H∗(X;R) ∼= H∗(S
n1 × · · · × Snk ;R) as R-modules where R = Z(p) or Fp.

Therefore one can consider many different versions of the rank conjecture depending on the
assumptions on X. It would be interesting to see the proofs or counterexamples to any of
these versions. It is also interesting to ask whether or not any two versions of the topological
rank conjecture is equivalent to each other.

Rank conjecture is a special case of the following conjecture due to Carlsson [13].
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Conjecture 3 (Carlsson’s conjecture). If G = (Z/p)r acts freely on a finite, connected CW-
complex X, then

2r ≤
dimX∑
i=0

dimFp Hi(X;Fp).

Note that the total homology dimension of a product of k spheres is equal to 2k, hence
Conjecture 2 follows from Conjecture 3. There is also a rational version of Carlson’s conjecture
for G = (S1)r actions due to Halperin [19, Problem 1.4]. It says that if G = (S1)r and X is
a finite, free G-CW-complex, then

2r ≤
dimX∑
i=0

rkQHi(X;Q).

It is known that Halperin’s conjecture is true for X = Sn1 × · · · × Snk (see [21]). Carlson’s
and Halperin’s conjectures are still open in general.

There is an algebraic version of Carlsson’s conjecture which states that if G = (Z/p)r and
C∗ is a finite chain complex of free FpG-modules with nonzero homology, then dimFp H∗(C∗) ≥
2r. Recently, Iyenger and Walker [23] gave a counterexample to the algebraic version of the
rank conjecture for p ≥ 3 and r ≥ 8. Ruping and Stephan [28] proved that the counterexample
complexes constructed by Iyenger and Walker can not be realized topologically. So Conjecture
2 is still open in general.

The main purpose of these notes is to discuss some of the known positive results for the
special cases of Conjecture 2. The first positive result for Conjecture 2 are due to Carlsson
that proves the conjecture for the case n1 = · · · = nk under the assumption that the induced
action on the mod-p homology of X is trivial.

Theorem 4 (Carlsson [11], [12]). Suppose G = (Z/p)r acts freely on a finite complex X,
where X is homotopy equivalent to (Sn)k, and suppose that G acts trivially on H∗(X;Fp).
Then r ≤ k.

Carlsson proves this theorem first for p = 2 in [11] using the Serre spectral sequence for
the Borel fibration X → EG×GX → BG. The main ingredients of the proof are the product
structure of the Serre spectral sequence and a version of Kudo’s trangression theorem for
Steenrod operations. In Section 3, we discuss the proof given in [11] for the p = 2 case of
Theorem 4.

In 1982, Carlsson [12] proves the p odd version of Theorem 4 by constructing a specific
model for C∗(X) and by using some results from commutative algebra. Later Browder [7],
and Benson and Carlson [3] also gave proofs for Theorem 4 using different methods. Browder
used Tate cohomology and exponents of cohomology groups, and Benson and Carlson used
the Lζ-modules and support varieties of modules. We discuss Browder’s proof in Section 4.

In 1988, Adem and Browder [2] proved that Conjecture 2 holds for free actions of G =
(Z/p)r on a product of equidimensional spheres (Sn)r without the assumption that the action
on homology is trivial for all p and n except when p = 2 and n = 1, 3, 7.

Theorem 5 (Adem-Browder [2]). Let G = (Z/p)r act freely on X = (Sn)k. Assume that
n 6= 1, 3, 7 when p = 2. Then r ≤ k.
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The case p = 2 and n = 1 is resolved later in [33]. The methods used in [33] are very
different than the methods used for the general proof. In [33], we use group extension theory
and special extension classes that were also used in the classification of Bieberbach groups.
The cases p = 2 and n = 3, 7 are still open.

The proof of Theorem 5 is written under the assumption that X is an orientable Z(p)-
homology manifold, but it can be replaced by an argument that uses only the assumption
that X is a finite complex with mod-p homology of (Sn)k. The main ingredient of the proof
is an inequality proved for Z(p)G-lattices for G = (Z/p)r. Using this inequality Adem and
Browder [2] proves the following sharper result for the rank of elementary abelian p-subgroups
acting freely on X = (Sn)r.

Theorem 6 (Adem-Browder [2, Thm 4.1]). Let G = (Z/p)r, p odd, act freely on an orientable
Z(p)-homology manifold X with H∗(X;Z(p)) ∼= H∗((Sn)k;Z(p)). Then

r ≤ dimFp Hn(X;Fp)G +
( 1

p− 1

)
(dimHn(X;Fp)− dimHn(X;Fp)G).

One of the consequences of this stronger inequality is that if p odd, and G = (Z/p)r acts
freely on X = (Sn)r, then G must act trivially on the mod-p homology of X.

For free actions on an arbitrary products of spheres, there are two other results that we
would like to mention. The first one is due to Hanke for the case where p is large compared
to the dimension of the space.

Theorem 7 (Hanke [20]). Let X = Sn1 × · · · × Snk and k0 denote the number of odd
dimensional spheres in X. If p > 3 dimX and (Z/p)r acts freely on X, then r ≤ k0.

This theorem suggests that for odd primes, the upper bound in Conjecture 2 should be
replaced by k0, the number of odd dimensional spheres in X. Hanke uses the tame homotopy
theory in his proof. Since the techniques of the proof are out of the scope of these notes, we
will not explain Hanke’s proof in these notes. Another result for free actions on products of
spheres with different dimensions is the following:

Theorem 8 (Okutan-Yalçın [26]). Suppose G = (Z/p)r for a prime p and k, l are positive
integers. Then there is an integer N that depends only on k, l, and G, such that if G acts freely
and cellularly on a finite-dimensional CW-complex X homotopy equivalent to Sn1 ×· · ·×Snk

where ni ≥ N and |ni − nj | ≤ l for all i, j, then r ≤ k.

This theorem roughly says that if X ' Sn1 × · · · × Snk where the average dimension of
spheres is large compared to the differences |ni−nj | of dimensions, then the rank conjecture
is true for free actions on X. The main ingredients for the proof of this theorem is a theorem
of Habegger [18] and an observation about cohomology of finite groups due to Pakianathan
[27]. We explain the proof of Theorem 8 in detail in Section 5.
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2 Homological Methods for Studying Group Actions

2.1 Group cohomology

Let G be a finite group, and k be a commutative ring. The group ring kG is the ring whose
elements are the formal sums

∑
g∈G agg where ag ∈ k, where the multiplication is given by(∑

g∈G
agg
)(∑

g∈G
bgg
)

=
∑
g∈G

(∑
hk=g

ahbk

)
g.

We often consider the cases where k = Z, Q, Z(p), or where k is a field of characteristic p.

Definition 9. A k-module M together with a G-action satisfying the following linearity
conditions is called a G-module:
(1) For every g ∈ G, m,m′ ∈M , g(m+m′) = gm+ gm′;
(2) For every g ∈ G, m ∈M , and λ ∈ k, g(λm) = λ(gm).

Every kG-module M can be considered as a G-module by taking its underlying k-module
with the G-action defined by multiplication with 1 · g ∈ ZG. Conversely, every G-module can
be considered as a kG-module by linearly extending the action of G on M to an action of
the ring kG.

The ring k is a one-dimensional k-module. We can consider it as a kG-module with the
trivial G-action gλ = λ. We refer to this module as the trivial kG-module k. A free
kG-module resolution of the trivial module k is an exact sequence of the form

(F∗, ε) : · · · → Fn+1
∂n+1−−−→ Fn

∂n−→ Fn−1 → · · · → F2
∂1−→ F1

∂0−→ F0
ε−→ k → 0

where each Fi is a free kG-module. Given a kG-module M , consider the cochain complex
HomkG(F∗,M) defined by

0→ HomkG(F0,M)
δ0−→ HomkG(F1,M)

δ1−→ · · · → HomkG(Fn,M)
δn−→ HomkG(Fn+1,M)→ · · ·

where δn(f) = (−1)n+1f ◦ ∂n+1 for every f ∈ HomkG(Fn,M).

Definition 10. The cohomology of G with coefficients in M is defined by

Hn(G;M) := Hn(HomkG(F∗,M), δ∗) = ker δn/im δn−1.

By the comparison theorem in homological algebra, projective/free resolution of k is
unique up to chain homotopy. So the definition of group cohomology does not depend on the
free resolution F∗.

Exercise 11. Using the definition of group cohomology, prove that for every kG-module M ,
H0(G;M) ∼= MG := {m ∈M | gm = m for all g ∈ G}.

Example 12. Suppose that p is a prime number, and G = Cp = 〈g | gp = 1〉 is the cyclic
group of order p. Let k be a field with characteristic p. Then there is a free kG-resolution of
k of the form

(F∗, ε) : . . . //kG
NG //kG

g−1 //kG
NG //kG

g−1 //kG
ε //k //0
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where NG = 1+g+ · · ·+gp−1 is the norm element, and ε is the augmentation map defined by
ε(
∑

g agg) =
∑

g ag. Applying the Hom-functor HomkG(−; k), we obtain a cochain complex
of the form

0 //k
0 //k

0 //k
0 // · · · .

Hence for every n ≥ 0, we have Hn(Cp; k) ∼= k as k-vector spaces.

Exercise 13. Verify that the chain complex in Example 12 is a resolution for k as a kG-
module.

For every subgroupH ≤ G, there is a homomorphism ResGH : H∗(G;M)→ H∗(H; ResGHM)
induced by the chain map

ResGH : HomkG(F∗,M)→ HomkH(ResGHF∗,ResGHM)

defined by the restriction of kG-homomorphisms to kH-homomorphisms. For every subgroup
H ≤ G with |G : H| <∞, there is a chain map in the other direction

TrGH : HomkH(ResGHF∗,ResGHM)→ HomkG(F∗,M)

defined by TrGH(f) =
∑

gH∈G/H gfg
−1 which induces a homomorphism

TrGH : H∗(H; ResGHM)→ H∗(G;M).

Using the definition it is easy to see that for every H ≤ G with finite index, TrGHResGHu =
|G : H|u for every u ∈ Hn(G;M). This shows in particular that for every finite group G, we
have |G| ·Hn(G;M) = 0 for n ≥ 0. If G is a finite group, then Hn(G;Z) is a finite abelian
group whose exponent divides the order of the group.

Definition 14. The tensor product C∗⊗D∗ of two chain complexes C∗, D∗ is a chain complex
with (C∗ ⊗D∗)n =

⊕
i+j=nCi ⊕Dj with the boundary map defined by

∂n(x⊗ y) = ∂i(x)⊗ y + (−1)ix⊗ ∂j(y)

for x ∈ Ci and y ∈ Dj .

Given a free resolution F∗
ε−→ k, consider the tensor product F∗ ⊗ F∗ together with the

augmentation map F∗ ⊗ F∗
ε−→ k defined by the homomorphism F0 ⊗ F0

ε⊗ε−−→ k ⊗ k µ−→ k,
where µ is the multiplication map. The augmented chain complex F∗ ⊗ F∗ → k is a free
kG-resolution of the trivial module k. By comparison theorem in homological algebra, there
is a chain map ∆∗ : F∗ → F∗⊗F∗ which induces the identity map on k. Any such chain map
is called a diagonal approximation.

Using a diagonal approximation ∆∗ : F∗ → F∗ ⊗ F∗, one can define cup product on
H∗(G; k) :=

⊕
i≥0H

i(G; k) using the composition

HomkG(F∗, k)⊗kHomkG(F∗, k)
ψ−→ HomkG(F∗⊗kF∗, k⊗k)

∆∗−−→ HomkG(F∗, k⊗k)
µ∗−→ HomkG(F∗, k)

where the first map ψ is defined by

ψ(f1 ⊗ f2)(x1 ⊗ x2) = (−1)deg f2·deg x1f1(x1)⊗ f2(x2),
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the second map is defined by ∆∗(f)(x) = f(∆(x)), and the last map is induced by multi-
plication map µ : k ⊗ k → k. These chain maps induces a homomorphism of cohomology
modules

Hn(∆∗ ◦ ψ) : Hn(HomkG(F∗, k)⊗k HomkG(F∗, k)) −→ Hn(HomkG(F∗, k)).

Recall that by standard properties of tensor product of chain complexes, we have an homo-
morphism

θ : Hp(HomkG(F∗, k))⊗k Hq(HomkG(F∗, k))→ Hp+q(HomkG(F∗, k)⊗k HomkG(F∗, k))

defined by [f1]⊗ [f2]→ [f1 ⊗ f2].

Definition 15. For every p, q ≥ 0, the cup product

∪ : Hp(G; k)⊗k Hq(G; k)→ Hp+q(G, k)

is defined to be the composition θ ◦Hn(∆∗ ◦ ψ).

To shorten the notation we write uv for the cup product u∪v. With cup product as the ring
multiplication, H∗(G; k) is a graded commutative k-algebra with identity 1 ∈ H0(G; k) ∼= k.
We have the following computation for the cohomology algebra of the cyclic group of order
p.

Proposition 16 ([9, Prop 4.5.1]). Let G = Cp, p a prime number, and k be a field with
characteristic p. Then there is an isomorphism of k-algebras

H∗(Cp; k) ∼=

{
k[x] if p = 2

∧k(y)⊗ k[x] if p > 2

where |x| = 1 if p = 2, and |y| = 1, |x| = 2 if p > 2.

Exercise 17 (Brown [8, pp 108]). Suppose that G = 〈g | gp = 1〉 ∼= Cp is a finite cyclic group
of order p, and k is a field of char p. Let F∗ → k be the periodic free kG-resolution of k
defined in Example 12. Then show that the map ∆ : F∗ → F∗ ⊗k F∗ defined by

∆m,n(1) =


1⊗ 1 if m is even

1⊗ g if m is odd, n is even∑
0≤i<j≤p−1 g

i ⊗ gj if m is odd, n is odd

is a diagonal approximation. Using this diagonal approximation, prove that the isomorphism
in Proposition 16 holds.

If H and K are two groups, then kH⊗kkG ∼= k[H×K] is a free H×K-module. Using this,
one can show that if F∗ → k is a free kH-resolution and F ′∗ → k is a free kK-resolution, then
F ⊗k F ′ is a chain complex of free k[H ×K]-modules. By Künneth theorem, we obtain that
F∗⊗kF ′∗ → k is a free k[H×K]-resolution of k. Applying the Hom-functor Homk[H×K](−, k),
and using the Künneth theorem again, we obtain that there is an isomorphism

H∗(H ×K; k) ∼= H∗(H; k)⊗k H∗(K; k).

With some extra work, one can show that this is an isomorphism of k-algebras [9, Prop 4.3.5].
As a consequence we obtain the following calculation.
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Proposition 18 ([9, Prop 4.5.4]). Let k be a field with characteristic p. Then

H∗((Cp)
r; k) ∼=

{
k[x1, . . . , xr] if p = 2

∧k(y1, . . . , yr)⊗ k[x1, . . . , xr] if p > 2

where deg xi = 1 if p = 2, and deg yi = 1, deg xi = 2 if p > 2.

Exercise 19. Give a full proof for Proposition 18.

2.2 G-simplicial complexes and their homology

Let G be a finite group. A G-simplicial complex X is a simplicial complex with a G-
action on its set of vertices in such a way that for every simplex σ = {v0, . . . , vn} in X,
gσ = {gv0, . . . , gvn} is a simplex in X. The realization |X| of a G-simplicial complex X is a
topological space with a continuous G-action.

A G-simplicial complex X is admissible if whenever an element g ∈ G fixes a simplex
σ ∈ X, then it fixes all its vertices (see [8, Sect IX.10]). If X is an admissible G-complex,
then for every H ≤ G,

XH = {σ ∈ X |hσ = σ for all h ∈ H}

is a subcomplex of X. In this case we have |X|H ∼= |XH |.
An G-simplical complex is regular if it satisfies the following condition for every subgroup

H ≤ G: If h0, h1, . . . , hn ∈ H and {v0, . . . , vn} and {h0v0, . . . , hnvn} are both simplices in X,
then there exists an element h ∈ H such that hvi = hivi for all i. If X is regular, then the
set of orbits [σ]G = {gσ | g ∈ G} of simplices in X forms a simplicial complex X/G such that
|X|/G ∼= |X/G| (see [6, Sect. III.1]).

For a simplicial complex X, the barycentric subdivision sd(X) is defined as simplicial
complex whose vertices are the simplices of X and whose simplices are the chains of the
simplices of X. If X is a G-simplicial complex, then sd(X) is also a G-simplicial complex
with the G-action on sd(G) is given by the G-action on the simplices of X.

Exercise 20. Prove that if X is a G-simplicial complex, then the barycentric subdivision
sd(X) is admissible. Also show that for every G-simplicial complex, sd2(X) is regular.

Let k be a commutative ring. The (oriented) simplicial chain complex C∗(X; k) of a
simplicial complex X with coefficients in k is defined as follows: For each simplex σ in X,
choose a total ordering for the vertices of σ and denote these oriented simplices by [v0, . . . , vn]
where v0 < · · · < vn. The n-th chain module Cn(X; k) is the free k-module with basis given
by all oriented simplices {v0, . . . , vn} of X. For the tuples of vertices ordered in a different
way, we have the following identification: If σ is a permutation of {0, . . . , n}, then

[vσ(0), . . . , vσ(k)] = sign(σ)[v0, . . . , vk].

For each k ≥ 1, the boundary map ∂ : Cn(X; k)→ Cn−1(X; k) is defined by

∂n[v0, . . . , vn] =

n∑
i=0

(−1)i[v0, . . . , v̂i, . . . , vk].
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Exercise 21. Let X be the 1-dimensional simplicial complex whose vertex set is V =
{a, b, c, d} and whose 1-simplices are given by {a, b}, {b, c}, {c, d}, and {d, a}. Choose
an orientation for each simplex and write the simplicial chain complex of X. Show that
H1(X; k) ∼= H0(X; k) ∼= k.

If X is a G-simplicial complex, then G permutes the simplices of X. Each chain module
Cn(X; k) is a kG-module and boundary maps are kG-module homomorphisms. In general
Cn(X; k) does not have to be permutation module, since the g ∈ G action may change the
sign of a basis element [v0, . . . , vn]. If X is admissible, this can not happen anymore: the
stabilizer of each simplex σ = {v0. . . . , vn} acts on the tuple [v0, . . . , vn] trivially. In this case
the chain module Cn(X; k) is a permutation kG-module. Furthermore, if the G-action on X
is free, then the chain complex C∗(X; k) is a chain complex of free kG-modules.

Example 22. Let G = 〈g | g2 = 1〉 ∼= C2. Consider the 1-dimensional simplicial complex X
whose vertex set is V = {a, b, c, d} and whose 1-simplices are given by {a, b}, {b, c}, {c, d},
and {d, a}. Let g ∈ G act on V by ga = c and gb = d. It is easy to see that with this action,
X is an admissible G-simplicial complex. The realization of X is a square with corners given
by vertices of X and edges are given by the 1-simplices. Note that |X| is G-homeomorphic
to G-space S1 with the antipodal action defined by gx = −x. The simplicial chain complex
of X is of the form

0→ C1(X; k)
∂1−→ C0(X; k)→ 0

where
C1(X;G) ∼= k[a, b]⊕ k[b, c]⊕ k[c, d]⊕ k[d, a] ∼= kG · [a, b]⊕ kG · [b, c]

and
C0(X;G) ∼= k[a]⊕ k[b]⊕ k[c]⊕ k[d] ∼= kG · [a]⊕ kG · [b].

The boundary map is defined by ∂1([a, b]) = [b]− [a] and ∂1([b, c] = [c]− [b]. The homology of
this chain complex is H1(X; k) ∼= H0(X; k) ∼= k. This gives an exact sequence of kG-modules

0→ k → kG⊕ kG→ kG⊕ kG→ k → 0.

Splicing these short exact sequences together one obtains a periodic free kG-resolution of k.

Example 23. Let G = 〈g1, g2 | g2
1 = g2

2 = (g1g2)2 = 1〉 ∼= C2×C2. Consider the 1-dimensional
simplicial complex X given above with G-action defined by g1a = c, g1b = b, g2a = a, and
g2b = d. Then X is an admissible G-simplicial complex and the chain complex C∗(X; k) is
of the form

0→ kG[a, b]
∂1−→ k[G/〈g2〉] · [a]⊕ k[G/〈g1〉] · [b]→ 0

where boundary map sends the basis element [a, b] to [b]− [a]. This gives an exact sequence
of kG-modules

0→ k → kG→ k[G/〈g2〉]⊕ k[G/〈g1〉]→ k → 0.

Note that in this case the chain modules are not free kG-modules, so the sequence above does
not give a periodic free kG-resolution of k.

Exercise 24. Consider the action of the symmetric group G = S3 on the simplicial complex
X with vertex set V = {1, 2, 3} and edge set S = {{1, 2}, {1, 3}, {2, 3}} given by the per-
mutation of the vertices with the natural action. The realization of X is the boundary of a
triangle with corners labeled as 1, 2, 3. Observe that this action is not admissible but the
G-action on the barycentric subdivision Y = sd(X) is admissible. Write the chain modules
and boundary maps for the simplicial chain complex of X and Y .
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2.3 G-CW-complexes

Another convenient category to study the G-spaces is the category of G-CW-complexes.

Definition 25. A G-space is a G-CW-complex if there is a filtration

∅ = X−1 ⊆ X0 ⊆ X1 ⊆ · · · ⊆ Xn−1 ⊆ Xn ⊆ · · ·

of X such that

1. For n ≥ 0, Xn is obtained from Xn−1 by attaching G-orbits of cells, i.e. there is a
G-pushout diagram ∐

i∈In G/Hi × Sn−1
� _

��

∐
fni // Xn−1� _

��∐
i∈In G/Hi ×Dn

∐
hni // Xn

2. X has weak topology with respect to the filtration {Xn}, i.e. B ⊆ X is closed if and
only if B ∩Xn is closed for all n ≥ −1.

For each i ∈ In, the subspace eni = hni (G/Hi × intDn) is called an orbit of open n-cells of X.

Let G be a finite group. If G acts on a CW-complex X by permuting its cells, it is called a
cellular action. It is also convenient to assume that the G-action satisfies the property that
if an element g ∈ G fixes a cell, then it fixes it pointwise. Note that if X is a G-CW-complex
then G acts on X cellularly and it satisfies the additional fixed point property. Conversely, If
X is a CW-complex and G-acts cellularly on X, satisfying the additional fixed point property,
then X has a G-CW-complex structure.

The following facts are well-known for G-CW-complexes for a finite group G (see [24]):

1. If X is an admissible G-simplicial complex then its realization is a G-CW-complex. By
an equivariant version of simplicial approximation theorem, every G-CW-complex is
G-homotopy equivalent to a simplicial G-complex.

2. Every closed smooth G-manifold admits a G-CW-complex structure.

3. A G-simplicial set is defined as a simplicial object in G-sets. The realization of a
G-simplicial set is a G-CW-complex.

4. Product of two G-CW-complexes is a G-CW-complex if we take X×Y with compactly
generated topology. If one of the complexes X or Y is a finite complex, then this is
true also with product topology.

The cellular chain complex C∗(X; k) of a G-CW-complex is a chain complex where
Cn(X; k) is a free k-module generated by n-dimensional cells. From the definition of G-
CW-complexes, we have

Cn(X; k) ∼=
⊕
i∈In

k[G/Hi]

as kG-modules. The boundary map ∂n : Cn(X; k)→ Cn−1(X; k) is a kG-module homomor-
phism. If G-action on X is free, then C∗(X; k) is a chain complex of free kG-modules.
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2.4 Proof of Smith’s theorem

Before we prove Smith’s theorem we make a few observations on cohomology of groups. Let
G be a finite group and k be a field of characteristic p. Then the group ring kG is isomorphic
to its dual kG∗ = Homk(kG, k). Using this we can show the following:

Lemma 26. If F is a free kG-module, then Hn(G;F ) = 0 for n ≥ 1.

Proof. Let F∗ be a free kG-resolution of k, and let F̃∗ : · · · → F1 → F0 → k → 0 denote the
corresponding augmented complex. We have

HomkG(F̃∗, kG) ∼= HomkG(F̃∗,Homk(kG, k)) ∼= HomkG(F̃∗ ⊗k kG, k) ∼= Homk(F̃∗, k).

Hence the cochain complex HomkG(F̃∗, kG) is an exact sequence since Homk(F̃∗, k) is exact.
This gives that Hn(G; kG) = 0 for n ≥ 1. Hence for every free kG-module F ∼= ⊕i∈IZG, we
have Hn(G;F ) ∼= ⊕i∈IHn(G;ZG) = 0 for n ≥ 1.

Using this vanishing result and the long exact sequences for group cohomology, we obtain
the following:

Lemma 27. Let 0→ A→ F → B → 0 be a short exact sequence of kG-modules where F is
a free kG-module. Then H i(G;B) ∼= H i+1(G;A) for i ≥ 1.

Exercise 28. Show that if 0 → A → Fk−1 → · · · → F0 → B → 0 is an exact sequence of
kG-modules where F0, . . . , Fk−1 are free kG-modules, then H i(G;B) ∼= H i+k(G;A) for all
i ≥ 1.

We now give the proof of Smith’s theorem stated in Section 1.

Proof of Theorem 1. Let G be a finite group and p be a prime number. Suppose that X is
a finite-dimensional free G-CW-complex X such that H∗(X;Fp) ∼= H∗(S

n;Fp), n ≥ 1. We
claim that then G does not include Cp × Cp as a subgroup. Assume contrary that G has a
subgroup P ≤ G such that P ∼= Cp × Cp.

Consider the P -action on X via restriction. Since this action is also free, the chain
complex of X, with coefficients in a field k of characteristic p,

C∗(X; k) : 0→ Cd → Cd−1 → · · · → Cn+1
∂n+1−−−→ Cn

∂n−→ Cn−1 → · · · → C0 → k → 0

is a chain complex of free kP -modules. We have Hn(X; k) = Zn/Bn ∼= k where Zn = ker ∂n
and Bn = im ∂n+1. This gives two exact sequences

0→ Cd → Cd−1 → · · · → Cn+1 → Cn
q−→ Cn/Bn → 0 (1)

and

0→ k → Cn/Bn
∂n−→ Cn−1 → Cn−2 → · · · → C0 → k → 0. (2)

where q is the quotient map and ∂n is the map induced by ∂n by taking quotient with
Bn ⊆ Zn = ker ∂n.

The last two terms of the exact sequence in (2) give a short exact sequence

0→ k → Cn/Bn → Zn−1 → 0.
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Consider the long exact sequence of cohomology groups associated to this short exact se-
quence:

· · · → H i−1(P ;Zn−1)→ H i(P ; k)→ H i(P ;Cn/Bn)→ H i(P ;Zn−1)→ H i+1(P, k)→ · · · .

The cohomology groups with coefficients in Zn−1 and Cn/Bn can be computed using the
exact sequences in (1) and (2). Applying Exercise 28 to the exact sequence in (1), we obtain
that H i(G;Cn/Bn) = 0 for i ≥ 1. Similarly applying Exercise 28 to the exact sequence

0→ Zn−1 → Cn−1 → · · · → C0 → k → 0,

we obtain that H i(P ; k) ∼= H i+n(P ;Zn−1) for i ≥ 1. Putting these calculations into the long
exact sequence above, we conclude that H i(P ; k) ∼= H i+n+1(P ; k) for i ≥ 1. This contradicts
with the earlier calculation that

H∗(Cp × Cp; k) ∼=

{
k[x1, x2] if p = 2

∧k(y1, y2)⊗ k[x1, x2] if p > 2.

Hence G does not include a subgroup P isomorphic to Cp × Cp.

An alternative approach to the above proof would be using some well-known results
about kG-modules. If G is a finite group and k is a field with characteristic p, then the
group ring kG is self-injective (i.e. kG is an injective kG-module). This follows from the
isomorphism kG∗ ∼= kG. This implies, in particular, that a finitely-generated kG-module is
projective if and only if it is injective (see [9, Theorem 2.2.3]). In fact, this is true even for
infinitely generated modules (see [10, Theorem 11.2]). This gives that the exact sequence in
(1) splits and Cn/Bn is a projective kP -module. Splicing the second exact sequence with
itself infinitely many times, we obtain a periodic projective resolution of k as a kP -module.
Existence of a periodic resolution implies that for every i ≥ 1, there is an isomorphism
H i(P ; k) ∼= H i+n+1(P ; k). Again this gives a contraction.

Exercise 29. Prove that if G is a finite group and k has characteristic p, then kG∗ ∼= kG.
Using this, conclude that if M is a finitely-generated kG-module, then M is projective if and
only if M is injective.

Exercise 30. Show that if p is odd, and X is a finite-dimensional free Cp-CW-complex X
such that H∗(X;Fp) ∼= H∗(S

n;Fp), then n is an odd number.

3 Borel Construction for Free Actions on Products of Spheres

3.1 Borel construction

Let G be a finite group. A universal G-space, denoted by EG, is a free G-CW-complex
which is contractible (non-equivariantly). The universal G-space EG is defined uniquely up
to G-homotopy equivalence. The orbit space BG = EG/G is the classifying space of G.
Since EG is contractible, the augmented chain complex C∗(EG; k) → k defines a free kG-
resolution of k. This gives an isomorphism H∗(G; k) ∼= H∗(BG; k) which can be taken as the
topological definition of group cohomology.
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If X is a G-CW-complex, then G acts freely on the product space EG×X via the diagonal
action g(e, x) = (ge, gx). The orbit space of this action XG := EG ×G X = (EG × X)/G
is called the Borel construction for the G-space X. The projection map EG ×X → EG
induces a map π : XG → BG on the orbit spaces. Since the quotient map EG→ BG defines
a principle G-bundle, π : XG → BG defines a fibre bundle with fiber X (see [5, Proposition
II.2.3]). Since all the spaces involved are CW-complexes. π : XG → BG is a fibration with
homotopy fibre X (see [22, Prop 4.48]). We call this fibration the Borel fibration for the
G-action on X. The following observation is key for using Borel construction for free actions
(see [11, Proposition 1]).

Lemma 31. Let X be a free G-CW-complex. Then the Borel construction XG is homotopy
equivalent to the orbit space X/G.

Proof. Consider the fibration EG→ XG → X/G induced by the projection map EG×X →
X. Since EG is contractible this gives that the map π2 : XG → X/G is a weak equivalence.
Since both of the spaces are CW-complexes, π2 is a homotopy equivalence.

3.2 Serre spectral sequence for the Borel fibration

The Serre spectral sequence associated to the fibration π : XG → BG has E2-page

Es,t2 = Hs(BG;Ht(X; k))

and it converges to H∗(XG; k). Here Hs(BG;Ht(X; k)) denotes the cohomology with local
coefficients. The π1(BG) ∼= G action on H∗(X; k) coincides with the G-action on H∗(X; k)
induced by the G-action on X.

It is often useful to compare Serre spectral sequence for Borel fibrations between different
group actions. Let X be a G-CW-complex. For each subgroup H ≤ G, there is a map

i : BH
Bi−→ BG and XH

Xi−→ XG induced by inclusion map i : H ↪→ G. This gives a map of
fibrations between the corresponding Borel fibrations:

X // EG×G X // BG

X // EH ×H X

Xi

OO

// BH.

Bi

OO

Since a map of fibrations induces a morphism of spectral sequences between corresponding
Serre spectral sequences, for each r ≥ 0, there is a morphism i∗ : Er(G) → Er(H) between
the Serre spectral sequences for XG and XH such that i∗ commutes with the differential dr.
On the E2-page this map is of the form

i∗ : H∗(G;H∗(X; k))→ H∗(H;H∗(X; k))

and it coincides with the restriction map ResGH in group cohomology.

Lemma 32. If X is a finite-dimensional free G-CW-complex, then in the Serre spectral
sequence for the Borel fibration XG → BG, we have Es,t∞ = 0 for every s, t with s+t > dimX.
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Proof. Since the G-action on X is free, by Lemma 31 the Borel construction XG is homotopy
equivalent to the orbit space X/G. Since X is a finite-dimensional G-CW-complex, the orbit
space X/G is also finite-dimensional, hence H i(XG; k) = 0 for i > dimX. This gives that in
the Serre spectral sequence Ei,j∞ = 0 for every s, t with s+ t > dimX.

This observation is main idea for proving restrictions on free actions on topological spaces.
To illustrate this method, we now give a different proof for Smith’s theorem.

Proof of Smith’s theorem using the Serre spectral sequence. Let G be a finite group and X be
a finite-dimensional free G-CW-complex with mod-p cohomology of Sn. Then Ht(X; k) ∼= k
for t = 0, n and Ht(X; k) = 0 when t 6= 0, n where k is a field with characteristic p. As
before assume contrary that G has a subgroup P ∼= Cp × Cp. Consider the Borel fibration
for the P -action on X. Since k has characteristic p, the P action on k is trivial. This gives
that Es,t2

∼= Hs(G; k) for t = 0, n, and zero otherwise. Since all the differentials dj : Es,ti →
Es+j,t−j+1
i are equal to zero for 2 ≤ j ≤ n, we have Es,tn+1

∼= Es,t2 . Consider the differential

ds,nn+1 : Es,nn+1 → Es+n+1,0
n+1 . Observe that all the higher differentials are zero, so E∞ ∼= En+2.

Since the action is free, by Lemma 32, we have Es,t∞ = 0 for s + t > dimX. Hence the
differential ds,nn+1 must be an isomorphism for s + n > dimX. This gives an isomorphism
Hs(P ; k) ∼= Hs+n+1(P ; k) for all s > (dimX)− n. This is again in a contradiction with the
calculation of H∗(Cp × Cp; k).

Exercise 33. (a) Suppose that G is a finite group which acts freely and cellularly on a
2n-dimensional CW-complex X such that H∗(X;Fp) ∼= H∗(Sn × Sn;Fp). Assume that G-
action on H∗(X;Fp) is trivial. Show that then there is a long exact sequence

H0(G;Fp)→ Hn+1(G;F2
p)→ H2n+2(G;Fp)→ H1(G;Fp)→ Hn+2(G;F2

p)→ · · ·

→ H i(G;Fp)→ H i+n+1(G;F2
p)→ H i+2n+2(G,Fp)→ H i+1(G;Fp)→ H i+n+2(G,F2

p)→ · · · .

(b) Using the exact sequence in part (a) and using the calculation given in Proposition 18,
prove Conner’s theorem under suitable assumptions.

Exercise 34. Let G ∼= (Z/2)r be an elementary abelian 2-group of rank r, and let X be a
finite free G-CW-complex such that H∗(X;F2) ∼= Sn × Sm with 1 ≤ n < m. Analyse the
differentials on the Serre spectral sequence for an Borel fibration (see [29, Sect 7] for a similar
analysis) and conclude that r ≤ 2.

The p = 2 case of Theorem 4 is proved by Carlsson using the Serre spectral sequence for
the corresponding Borel fibration. In the proof one of the crucial ingredients is the product
structure on the Serre spectral sequence.

Proposition 35 ([25, Theorem 5.2]). Let X be a G-CW-complex and k be a field with
characteristic p. Then the Serre spectral sequence has a product structure Ep,qr ⊗ Es,tr →
Ep+s,q+tr such that the derivations defined by the composition

Hp(G;Hq(X; k))⊗Hs(G;Ht(X; k))→ Hp+s(G;Hq(X; k)⊗Ht(X; k))

→ Hp+s(G;Hq+t(X; k))
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where both maps are defined by the cup product. If the induced G-action on H∗(X; k) is
trivial, then there is an isomorphism

Ep,q2 = Hp(G;Hq(X; k)) ∼= Hp(BG; k)⊗Hq(X; k).

In this case the product structure on E∗,∗2
∼= Hp(G; k)⊗Hq(X; k) is defined by (x⊗u)(y⊗v) =

xy ⊗ uv where xy and uv are the cup products in H∗(G; k) and H∗(X; k).

3.3 Carlsson’s theorem for homologically trivial actions: the p = 2 case.

In this section we sketch the proof of the p = 2 case of Carlsson’s theorem stated as Theorem
4 in the introduction.

Suppose that G ∼= (Z/2)r and X is a finite free G-CW-complex homotopy equivalent to
(Sn)k for some n ≥ 1. Consider the Serre spectral sequence

H∗(G;H∗(X;F2))⇒ H∗(XG;F2)

for the G-action on X. Since the action is free XG
∼= X/G has finite-dimensional cohomology,

so we must have Ep,q∞ = 0 for p+q > dimX. It is assumed that G acts trivially on H∗(X;F2),
so we have an isomorphism

Ep,q2
∼= Hp(G;F2)⊗Hq(X;F2).

The spectral sequence has a product structure induced by the cup products on the cohomology
groups H∗(G;F2) and H∗(X;F2). In this case we have H∗(G;F2) ∼= F2[x1, . . . , xr], where
|xi| = 1 for all i, and H∗(X;F2) ∼= ∧F2(t1, . . . , tk), where |ti| = n for all i. We will identify
E0,∗

2 with H∗(X;F2) and E∗,02 with H∗(G;F2). Using the product structure we will write the
elements in Ep,q2 as a product of elements in Hp(G;F2) and Hq(X;F2).

Because of dimension reasons, the first nonzero differentials in this spectral sequence
appear on the En+1-page, so we have E∗,∗n+1

∼= E∗,∗2 and the first nonzero differentials are

dp,jnn+1 : Ep,jnn+1 → Ep+n+1,jn−n
n+1

for j = 1, . . . , k. For i = 1, . . . , k, let µi := d0,n
n+1(ti) ∈ Hn+1(G;F2). We call the cohomology

classes µ1, . . . , µk the k-invariants of the G-action on X. Note that since H∗(G;F2) ∼=
F2[x1, . . . , xr] we can consider the classes µi as polynomials of degree n + 1 with variables
x1, . . . , xn.

Lemma 36. Let µ1, . . . , µk be the k-invariants of a free G = (Z/2)r-action on X ' (Sn)k

in F2-coefficients. Then the cohomology classes µ1, . . . , µk have no common zeros in Fr2 when
they are considered as polynomials in F2[x1, . . . , xr].

Proof. Using the isomorphism H1(G;F2) ∼= Homab(G;F2), we can choose a set of generators
{g1, . . . , gr} for G ∼= (Z/2)r such that gi(xj) = 1 if i = j, and 0 otherwise. Note that for every

element g = gλ11 . . . gλrr in G, we have ResG〈g〉xi = λix where x is the generator of H1(〈g〉;F2)

dual to g. Hence for every f(x1, . . . , xr) in Hp(G;F2), and for every g = gλ11 . . . gλrr , we have

ResG〈g〉f(x1, . . . , xr) = f(λ1, . . . , λr).
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If the polynomials µ1, . . . , µk have a common zero, then there is an element (λ1, . . . , λr) ∈
Fr2 such that µi(λ1, . . . , λr) = 0 for all i = 1, . . . , k. If we take g ∈ G as the element
g = gλ11 . . . gλrr , then ResG〈g〉µi = 0 for all i = 1, . . . , k. We now argue that this gives a
contradiction.

For every subgroup H ≤ G, this is a morphism of spectral sequences between the
Serre spectral sequences for G-space X and its restriction to H. This gives a morphism
between corresponding Serre spectral sequences. In particular, there is a homomorphism
i∗ : E∗,∗n+1(G) → E∗,∗n+1(H) of spectral sequences induced by the inclusion map i : H → G.

Since i∗ induces the identity map on E0,∗
n+1
∼= H∗(X;F2) and it is the restriction map on

E∗,0n+1
∼= H∗(G;F2), we obtain that the differential d0,n

n+1(H) for the Borel fibration XH → BH

takes ti to ResGHµi for each i. If we apply this to the subgroup 〈g〉 such that ResG〈g〉µi = 0

for all i = 1, . . . , k, we obtain that in the Serre spectral sequence for the 〈g〉-action on X, we
have d0,n

n+1 = 0. Using the product structure and the Leibniz rule, this gives that dp,qn+1 = 0
for all p, q. The higher dimensional differentials will also vanish by a similar argument. Thus
in the Serre spectral sequence for the 〈g〉-action on X, we have

E∗,∗∞
∼= E∗,∗n+1

∼= E∗,∗2
∼= H∗(X;F2)⊗H∗(〈g〉;F2)

which implies that
⊕

p+q=N E
p,q
∞ 6= 0 for all N . This contradicts with the conclusion of

Lemma 32.

The fact that the k-invariants µ1, . . . , µk have no common zeros by itself is not enough to
conclude that r ≤ k. For example µ1 = x2

1 + x1x2 + x2
2 has no zeros in F2

2 as a polynomial in
F2[x1, x2], but in this case r = 2 > k = 1. So we need more restrictions on the k-invariants
µ1, . . . , µk.

Lemma 37. Let µ1, . . . , µk be the k-invariants of a free G = (Z/2)r-action on X ' (Sn)k in
F2-coefficients. Then the ideal I = (µ1, . . . , µk) ⊆ F2[x1, . . . , xr] generated by the k-invariants
of the action is closed under the Steenrod operations, i.e, for each i, j, we have Sqj(µi) ∈ I.

Proof. An element x ∈ E0,q
2 = H0(BG,Hq(X;F2)) is called transgressive if dj(x) = 0 for

j = 2, . . . , q. In this case we say x transgresses to the element y = dq+1(x) ∈ Eq+1,0
q+1 . There

is a theorem which says that if x ∈ Hq(X,F2) is G-invariant and transgressive, then Sqj(x)
is also G-invariant and transgressive, and we have dq+j+1(Sqj(x)) = Sqj(y) (see [22, p. 540]).
This theorem is sometimes called the Kudo’s transgression theorem. Applying this theorem
to the Serre spectral sequence for the G = (Z/2)r action on X = (Sn)k, we obtain that for
each i ∈ {1, . . . , k}, and 0 ≤ j ≤ n, Sqj(µi) = 0 in En+j+1,0

n+j+1 . The only nonzero differential

hitting En+j+1,0
n+1 is dj,nn+1, so there are elements γ1, . . . , γk ∈ Hj(G;F2) such that

Sqj(µi) = dj,nn+1

(∑
l

γltl

)
=
∑
l

γlµl.

Hence, for each i, we have Sqj(µi) ∈ (µ1, . . . , µk).

Now, the proof of Theorem 4 follows from the following Theorem due to Serre [30].

Theorem 38. Let I ⊆ F2[x1, . . . , xr] be an ideal invariant under Steenrod operations. Then
the variety V (I) defined by the ideal I over k = F2, the algebraic closure of F2, is union of
linear subspaces rational over F2.
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Serre’s theorem implies that if I is a homogeneous ideal generated by f1, . . . , fk in
F2[x1, . . . , xr], then f1, . . . , fk have no common zeros over F2 if and only if they have no
common zeros over k = F2. This implies, in particular, that k ≥ r. Applying this to the
k-invariants µ1, . . . , µk in H∗(G;F2) ∼= F2[x1, . . . , xr], we obtain the inequality r ≤ k. This
completes the proof of Theorem 4 for p = 2.

Remark 39. Note that the above proof does not hold when p > 2. In this case the Steenrod
operations send the generators t1, . . . , tk of Hn(X;Fp) to the dimensions higher than 2n, so
one can not directly conclude that the ideal generated by the k-invariants µ1, . . . , µk is a
Steenrod closed ideal. Carlsson proves Theorem 4 for p > 2 in [12] by constructing a chain
map

C∗(X)→ ⊗ki=1C∗(µi)

from the chain complex of a finite G-CW-complex X ' (Sn)k with k-invariants µ1, . . . , µk
to a tensor product of chain complexes C∗(µi) which are algebraic homology spheres with
k-invariants µ1, . . . , µk.

Later a similar argument was used by Benson and Carlson [3] to give a different proof
of Theorem 4. Benson and Carlson uses Lζ-modules and the theory of support varieties
for kG-modules. Because of time constraints I will not be able to cover these proofs in my
lectures. We refer the reader to original papers cited above for these proofs.

4 Method of Exponents and Browder’s Theorem

4.1 Tate Hypercohomology

Let G be a finite group. A complete resolution for G is an acyclic chain complex

(F∗, ε) : · · · → F2
∂2−→ F1

∂1−→ F0
∂0−→ F−1

∂−1−−→ F−2 → · · ·

of free ZG-modules together with a homomorphism ε : F0 → Z such that

F∗ : · · · → F2
∂2−→ F1

∂1−→ F0
ε−→ Z→ 0

is a free ZG-resolution of Z. Note that if F∗ is a complete resolution, then ker ∂−1 = im ∂0 is
isomorphic to Z via the map ε. So the boundary homomorphism ∂0 splits as ∂0 = ηε, where
η : Z → F−1 is the injection mapping Z into the kernel of ∂−1. The map η together with
boundary maps in negative dimensions defines a coresolution

0→ Z η−→ F−1
∂−1−−→ F−2

∂−2−−→ F−3 → · · ·

Since each Fi is a free ZG-module, this is a coresolution of Z with relatively injective ZG-
modules (see [8, Sect VI.2]).

Definition 40. The Tate cohomology of a finite group G with coefficients in a ZG-module
M is defined by

Ĥn(G;M) := Hn(HomZG(F∗,M))

for all n ∈ Z, where F∗ is a complete resolution for G.
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One can show that a complete resolution for G is unique up to an augmentation preserving
chain homotopy. So the definition of Tate cohomology is independent of the chosen resolution
for G. From the definition it follows easily that for any ZG-module M ,

Ĥn(G;M) ∼=

{
Hn(G;M) if n ≥ 1

H−n−1(G;M) if n ≤ −2

and there is an exact sequence

0→ Ĥ−1(G;M)→ H0(G;M)
NG−−→ H0(G;M)→ Ĥ0(G;M)→ 0.

where NG : MG → MG is the norm map defined by NG([m]) =
∑

g∈G gm. In particular we
have the following:

Lemma 41. For every finite group G, we have Ĥ0(G;Z) ∼= Z/|G|Z.

Using a complete diagonal approximation, one can define a product structure on Tate co-
homology which coincides with the cup product for group cohomology in positive dimensions
(see [8, Sect VI.5]).

Exercise 42. Show that if F is a free ZG-module, then Ĥ i(G;F ) = 0 for all i ∈ Z.

We now define the Tate hypercohomology of a finite group G with coefficients in a chain
complex C∗ of ZG-modules. For this we need to extend the definition of the Hom-functor
that we defined earlier. Suppose C∗ and D∗ are chain complexes over ZG with differentials
∂C and ∂D, respectively. Let H omG(C∗, D∗) denote the cochain complex with n-cochains

H omG(C∗, D∗)
n =

∏
i∈Z

HomZG(Ci, Di−n)

whose coboundary maps are defined by δn(f) = ∂Df − (−1)nf∂C . If D∗ is a chain complex
concentrated at dimension 0 with D0 = M , then H omG(−, D∗) is naturally equivalent to
the functor HomG(−,M) that we defined earlier.

Definition 43. Let G be a finite group and C∗ be a chain complex of ZG-modules. The
Tate hypercohomology of G with coefficients in C∗ is defined by

Ĥ i(G;C∗) := H i(H omG(F∗, C∗))

for all i ∈ Z, where F∗ is a complete ZG-resolution of Z.

For a chain complex C∗, the (left) k-shifted complex ΣkC∗ is defined to be the chain com-
plex where (ΣkC∗)i = Ci−k with boundary map (Σk∂)i = (−1)k∂i−k. For a cochain complex
C∗ we define the (left) k-shifted cochain complex by (ΣkC∗)i = Ci+k with coboundary maps
(Σkδ)i = (−1)kδi+k. It is easy to see that

H omG(C∗,Σ
kD∗) ∼= ΣkH omG(C∗, D∗).

From this we obtain that Ĥ i(G; ΣkC∗) ∼= Ĥ i+k(G;C∗). Therefore, if C∗ is a chain complex
concentrated at dimension n, then Ĥ i(G;C∗) ∼= Ĥ i+n(G;Cn).

18



Lemma 44. Given a short exact sequence of chain complexes

0→ C∗ → D∗ → E∗ → 0

of ZG-modules, there is a long exact sequence of the following form

· · · → Ĥ i(G,C∗)→ Ĥ i(G,D∗)→ Ĥ i(G,E∗)→ Ĥ i+1(G,C∗)→ · · · .

The following observation is crucial for proofs using Tate hypercohomology.

Proposition 45. If F∗ is a bounded chain complex of free ZG-modules, then Ĥ i(G;F∗) = 0
for all i ∈ Z.

Proof. By shifting the complex if necessary we can assume that F∗ is a chain complex of the
form

0→ Fd → Fd−1 → · · · → F1 → F0 → 0.

There is a short exact sequence of chain complexes

0→ F ′∗ → F∗ → F ′′∗ → 0

where F ′∗ is the chain complex

0→ Fd−1 → · · · → F1 → F0 → 0.

and F ′′∗ is the chain complex concentrated at dimension d with F ′′d = Fd. By induction

Ĥ i(G;F ′∗) = 0 for all i ∈ Z, and by Exercise 42, Ĥ i(G;F ′′∗ ) = 0 for all i ∈ Z. Hence now the
result follows from Lemma 44.

4.2 Browder’s Theorem

The exponent of a finite abelian group A is defined as the smallest positive integer n such
that na = 0 for all a ∈ A. We denote the exponent of A by expA. A nonnegative chain
complex C∗ of ZG-modules is said to be connected if H0(C∗) ∼= Z. A nonnegative chain
complex C∗ is finite-dimensional if there is an integer d such that Cd 6= 0 and Ci = 0 for
all i > d. In this case we say d is the dimension of C∗. By convention C∗ = 0 is also
finite-dimensional with dimension −1.

The main purpose of this section is to prove the following theorem due to Browder [7].

Theorem 46 (Browder [7]). Let C∗ be a nonnegative chain complex of free ZG-modules. If
C∗ is connected and finite-dimensional, then |G| divides

∏dimC∗
j=1 expHj+1(G;Hj(C∗)).

Proof. We will give a proof of Browder’s theorem using a hypercohomology spectral sequence
that converges to the Tate hypercohomology Ĥ∗(G;C∗). To construct this spectral sequence,
consider the double complex Dp,q = HomZG(Fp, C−q) where the vertical and horizontal dif-
ferentials are given by δv = Hom(−, ∂C∗ ) and δh = Hom(∂F∗ ,−). For this construction we
assume that C∗ is a finite-dimensional, nonnegative chain complex of ZG-modules. Then the
total complex TotD∗,∗ is the chain complex with

TotnD∗,∗ =
⊕
p+q=n

Dp,q =
⊕
p+q=n

HomZG(Fp, C−q)
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and δn = δv − (−1)nδh. Note that the total complex TotD∗,∗ is isomorphic to the cochain
complex H omG(F∗, C∗) defined earlier. Filtering this double complex with respect to the
index p and then with respect to the index q, we obtain two spectral sequences

IEp,q2 = Ĥp(G;H−q(C∗))⇒ Ĥp+q(G;C∗)

IIEp,q1 = Ĥq(G;C−p)⇒ Ĥp+q(G;C∗).

If C∗ is a chain complex of free ZG-modules, then IIEp,q1 = Ĥq(G;C−p) = 0 for all p, q. This

implies that Ĥn(G;C∗) = 0 for all n. This gives a strong restriction on the first spectral
sequence. Note that since C∗ is nonnegative, IE∗,∗r is nonzero only on the lower half plane.
If C∗ is connected, then IEp,02 = Ĥp(G;Z). In particular, IE0,0

2
∼= Z/|G|Z by Lemma 41. For

each r ≥ 2, the differentials out of IE0,0
r are of the form

d0,0
r : IE0,0

r → IEr,−r+1
r .

Since the generator of IE0,0
2
∼= Z/|G|Z does not survive to E∞-page (because the E∞-page

is zero), we can conclude that |G| divides the product
∏dimC∗+1
r=2 expEr,−r+1

r . Since for each

r ≥ 2, Er,−r+1
r is a subquotient of Er,−r+1

2 = Ĥr(G;Hr−1(C∗)), we know that expEr,−r+1
r

divides expĤr(G;Hr−1(C∗)). Using this, we obtain that |G| divides the product

dimC∗+1∏
r=2

expĤr(G;Hr−1(C∗)) =

dimC∗∏
j=1

expHj+1(G;Hj(C∗)).

As a corollary of Theorem 46, Browder gives a proof for Theorem 4. Note that if C∗ =
C∗(X) for some finite-dimensional G-CW-complex X homotopy equivalent to (Sn)k, then
H∗(X) is nonzero in exactly k many positive dimensions. If G ∼= (Z/p)r and M is a trivial
ZG-module, then expH i(G;M) divides p for all i ≥ 1. So, from the conclusion of Theorem
46, one obtains that |G| = pr divides pk, which gives r ≤ k.

The method of exponents are also used to studyG-CW-complexes with non trivial isotropy
subgroups and for these type of actions a theorem similar to Theorem 46 is proved by Adem
in [1].

In [2], Adem and Browder proves Theorem 5. The main algebraic input for the proof
is certain dimension inequalities for the representations of G = (Z/p)r over p-local integers
Z(p). The main topological ingredient is the following theorem.

Theorem 47 ([2, Thm 1.1]). Let G = (Z/p)r act freely on an orientable Z(p)-homology

manifold X with H∗(X;Z(p)) ∼= H∗((Sn)k;Z(p)), then

dimHn(X;Fp)G ≥ rkH

where H ≤ G is the subgroup of elements in G acting trivially on H∗(X;Z(p)).

The proof of this theorem also uses an argument with exponents of cohomology groups.
We refer the reader to the original paper [2] for this proof.
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5 Free Actions on Products of Spheres at High Dimensions

5.1 Habegger’s Theorem

Let C∗ and D∗ be two chain complexes of ZG-modules. We say that D∗ is an extension of
C∗ by a finite length chain complex of free modules if there is short exact sequence of chain
complexes either of the form 0→ C∗ → D∗ → F∗ → 0, or of the form 0→ F∗ → D∗ → C∗ →
0, where F∗ is a finite length chain complex of free modules. The chain complexes C∗ and D∗
are freely equivalent if there is a sequence of chain complexes C∗ = E0

∗ , E
1
∗ , . . . , E

n
∗ = D∗

such that either Ei∗ is an extension of Ei−1
∗ , or Ei−1

∗ is an extension of Ei∗ by a finite length
chain complex of free modules. As a corollary of Proposition 45 and Lemma 44, we have:

Corollary 48. If two chain complexes C∗ and D∗ are freely equivalent, then Ĥ i(G,C∗) ∼=
Ĥ i(G,D∗) for all i.

In [18, p. 433-434], Habegger uses a technique to “glue” homology groups of a chain
complex at different dimensions. This technique will be crucial in the proof of Theorem 8.
Before we state Habegger’s theorem, we recall the definition of syzygies of modules.

Definition 49. For every positive integer n, the n-th syzygy of a ZG-module M is defined
as the kernel of ∂n−1 in a partial resolution of the form

Pn−1
∂n−1−−−→ · · · → P2

∂2−→ P1
∂1−→ P0 →M → 0

where P0, . . . , Pn−1 are projective ZG-modules. We denote the n-th syzygy of M by ΩnM
and by convention we take Ω0M = M .

The n-th syzygy of a module M is well-defined only up to stable equivalence. Recall that
two ZG-modules M and N are called stably equivalent if there are projective ZG-modules
P and Q such that M ⊕ P ∼= N ⊕ Q. Well-definedness of syzygies up to stable equivalence
follows from a generalization of Schanuel’s lemma (see [8, p. 193]). If M and N are two
stably equivalent ZG-modules, then Ĥ i(G,M) ∼= Ĥ i(G,N) for all i. Since we are interested
in cohomology groups with coefficients in these modules, we will ignore the fact that syzygies
are well-defined only up to stable equivalence and treat ΩnM as a unique module depending
only on M and n.

Theorem 50 (Habegger [18]). Let C∗ be a chain complex of ZG-modules and n,m are
integers such that m < n. If Hk(C∗) = 0 for all k with m < k < n, then C∗ is freely
equivalent to a chain complex D∗ such that

(i) Hi(D∗) = Hi(C∗) for every i 6= n,m;

(ii) Hm(D∗) = 0, and;

(iii) there is an exact sequence of ZG-modules

0→ Hn(C∗)→ Hn(D∗)→ Ωn−mHm(C∗)→ 0.

Proof. Let Fn−1 → · · · → Fm → Hm(C∗) → 0 be an exact sequence of ZG-modules where
Fm, . . . , Fn−1 are free modules. Consider the following diagram

· · · −−→ 0 −−→ Fn−1 −−→ · · · −−→ Fm+1 −−→ Fm −−→ Hm(C∗) −−→ 0

id

y
· · · −−→ Cn −−→ Cn−1 −−→ · · · −−→ Cm+1 −−→ Zm −−→ Hm(C∗) −−→ 0
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where Zm denotes the group of m-cycles in C∗. Since all Fi’s are free and the bottom row has
no homology at dimensions less than n, the identity map extends to a chain map f ′∗ : F∗ → C ′∗
between these chain complexes. This gives a chain map f∗ : F∗ → C∗ as follows

· · · −−→ 0 −−→ Fn−1 −−→ · · · −−→ Fm+1 −−→ Fm −−→ 0 −−→ · · ·y fn−1

y fm+1

y fm

y y
· · · −−→ Cn −−→ Cn−1 −−→ · · · −−→ Cm+1 −−→ Cm −−→ Cm−1 −−→ · · · .

where the maps fi : Fi → Ci for i ≥ m+ 1 are the same as the maps f ′∗ in the first diagram
above, and the map fm : Fm → Cm is defined as the composition

Fm
f ′m−−→ Zm ↪→ Cm.

Now, let D∗ be the mapping cone of f∗ : F∗ → C∗. There is a short exact sequence

0→ C∗ → D∗ → ΣF∗ → 0,

so C∗ is freely equivalent to D∗. Consider the corresponding long exact sequence of homology
groups

· · · −−→ Hi(F∗)
f∗−−→ Hi(C∗) −−→ Hi(D∗) −−→ Hi−1(F∗) −−→ · · · .

Assume first that n > m + 1. Then F∗ has at least two terms and its homology is
nonzero only at two dimensions n − 1 and m. So, Hi(C∗) ∼= Hi(D∗) for all i such that
i 6= m,m+ 1, n− 1, n. At dimension m, the map f∗ : Hm(F∗)→ Hm(C∗) is an isomorphism,
so we get Hm(D∗) = Hm+1(D∗) = 0. At dimension n− 1, we have Hn−1(C∗) = 0, so we get
Hn−1(D∗) = 0. We also have a short exact sequence of the form

0 −−→ Hn(C∗) −−→ Hn(D∗) −−→ Hn−1(F∗) −−→ 0.

Since Hn−1(F∗) ∼= Ωn−m(Hm(C∗)), this gives the desired result.

If n = m+ 1, then F∗ has a single term Fm, so we have a sequence of the form

0 −−→ Hn(C∗) −−→ Hn(D∗) −−→ Fm
f∗−−→ Hm(C∗) −−→ Hm(D∗) −−→ 0.

Since f∗ is surjective by construction, we conclude that Hm(D∗) = 0 and there is a short
exact sequence of the form

0 −−→ Hn(C∗) −−→ Hn(D∗) −−→ Ω1(Hm(C∗)) −−→ 0

as desired.

5.2 Proof of Okutan-Yalçın Theorem

In this section we give a proof of Theorem 8 stated in the introduction. Let G = (Z/p)r and
k, l be positive integers. Suppose that G acts freely and cellularly on some CW-complex X
homotopy equivalent to Sn1 × · · · × Snk where |ni − nj | ≤ l for all i, j. Let n = max{ni :
i = 1, . . . , k} and let ai = n − ni for all i. Consider the cellular chain complex C∗(X) of
the CW-complex X. The complex C∗(X) is a nonnegative, connected, and finite-dimensional
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chain complex of free ZG-modules and has nonzero homology only at the following dimensions
other than dimension zero:

(1) n− a1, n− a2, . . . , n− ak
(2) 2n− a1 − a2, 2n− a1 − a3, . . . , 2n− ak−1 − ak

...
(j) jn− (a1 + · · ·+ aj), . . . , jn− (ak−j+1 + · · ·+ ak)

...
(k) kn− (a1 + a2 + · · ·+ ak).

If n > lk, then we have n > a1 + · · ·+ak which implies that for all j, the dimensions listed
on the j-th row are strictly larger than the dimensions listed on the previous rows. Since this
fact is important for our argument, we will assume that the integer N in the statement of
the theorem satisfies N > lk to guarantee that this condition holds.

Now we can apply Habegger’s argument given in Theorem 50 to glue step by step all the
homology groups at the dimensions listed on the j-th row above to the homology at dimension
jn for all j = 1, . . . , k. The resulting complex D∗ is a connected, finite-dimensional chain
complex of free ZG-modules which has homology only at dimensions 0, n, 2n, . . . , kn. Let
Mj := Hjn(D∗) for all j = 1, . . . , k. Note that by construction Mj is a finitely-generated
ZG-module for all j since syzygies of finitely-generated ZG-modules are finitely-generated
when G is a finite group.

To estimate the exponents of cohomology groups with coefficients in Mj ’s we need the
following observation due to Pakianathan [27].

Lemma 51. Let G = (Z/p)r and M be a finitely-generated ZG-module. Then, there is an
integer N such that the exponent of H i(G,M) divides p for all i ≥ N .

Proof. By Theorem 7.4.1 in [16, p. 87], H∗(G,M) is a finitely-generated module over the ring
H∗(G,Z). Let u1, ..., uk be homogeneous elements generating H∗(G,M) as an H∗(G,Z)-
module and let N = 1 + maxj{deg uj}. If i ≥ N and x ∈ H i(G,M), then we can write
x = Σk

j=1αjuj for some homogeneous elements αj in H∗(G,Z) with degαj ≥ 1 for all j.

Since expH i(G,Z) divides p for all i ≥ 1, we have pαj = 0 for all j. Hence we obtain px = 0
as desired.

Now we can apply Lemma 51 to find an integer Nj for each j such that if i ≥ Nj , then
expH i(G,Mj) divides p. Suppose that for a fixed G = (Z/p)r, k, and l, there are only finitely
many possibilities for ZG-modules Mj ’s up to stable equivalence. If this is the case, then the
proof can be completed by the following argument:

Let Nmax
j be the maximum of Nj ’s over all possible Mj . Then for each j such that if

i ≥ Nmax
j , then expH i(G,Mj) divides p for all possible Mj ’s that may occur. Let N =

maxj N
max
j . By Theorem 46, we have |G| = pr divides

k∏
j=1

Hjn+1(G;Hjn(D∗)) =

k∏
j=1

Hjn+1(G;Mj).

So, if n ≥ N , then pr divides pk which gives r ≤ k as desired.
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Hence to complete the proof, it only remains to show that for fixed G = (Z/p)r, k, and
l, there are only finitely many possibilities for ZG-modules Mj ’s up to stable equivalence.
To show this, first note that for a fixed l, there are finitely many k-tuples (a1, ..., ak) with
the property that 0 ≤ ai ≤ l for all i. So we can assume that we have a fixed k-tuple
(a1, . . . , ak). Let us also fix an integer j and show there are only finitely many possibilities
for Mj = Hjn(D∗).

Let s1 < · · · < sm be a sequence of integers such that {jn − s1, . . . , jn − sm} is the set
of all distinct dimensions on the j-th row of the above diagram. Note that the complex D∗
is constructed with the repeated usage of Theorem 50, so the module Mj = Hjn(D∗) has a
filtration

0 = K0 ⊆ K1 ⊆ · · · ⊆ Km = Mj

such that Ki/Ki−1
∼= Ωsi(Ai) where Ai = Hjn−si(X). For all i, the module Ai is a Z-free

ZG-module with rkZAi ≤
(
k
j

)
. We can now use the following theorem due to Jordan and

Zassenhaus.

Theorem 52 (Cor 79.12 in [15, p. 563]). Let G be a finite group and d a positive integer.
Then there are only finitely many Z-free ZG-modules with dimension ≤ d.

Since rkZAi ≤
(
k
j

)
, by Jordan-Zassenhaus theorem, there are finitely many possibilities

for Ai’s up to isomorphism. Now we will inductively show that there are also only finitely
many possibilities for Ki’s up to stable equivalence. For i = 1, we have K1 = Ωs1(A1) so this
follows from the fact that there are only finitely many possibilities for A1 and that syzygies are
well-defined up to stable equivalence. For i > 1, consider the following short exact sequence:

0 −−→ Ki−1 −−→ Ki −−→ ΩsiAi −−→ 0.

By induction we know that there are only a finite number of possibilities for Ki−1’s up to
stable equivalence. By a similar argument as above, the same is true for Ωsi(Ai). The
extensions like the ones above are classified by the ext-group Ext1

ZG(Ωsi(Ai),Ki−1) and since
both modules are Z-free, these ext-groups are well-defined up to stable equivalence. So, it
remains to show that

Ext1
ZG(Ωsi(Ai),Ki−1) ∼= Extsi+1

ZG (Ai,Ki−1)

is a finite group. Since both Ai and Ki−1 are finitely generated, Extsi+1
ZG (Ai,Ki−1) is a finitely

generated abelian group. Moreover, since Ai is Z-free, it has an exponent divisible by |G|.
So, Extsi+1

ZG (Ai,Ki−1) is a finite group. Hence there are only a finite number of possibilities
for Ki’s up to stable equivalence. This completes the proof that there are only finitely many
possibilities for Mj ’s up to stable equivalence, Hence the proof of Theorem 8 is complete.
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