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Abstract

These are notes for a four part mini course on the Toral Rank Conjecture, held in
Copenhagen June 24–28 2024. The goal is to briefly review the path from geometry to
commutative algebra as well as survey some of the most important results regarding the
conjecture. The notes roughly reflect the content of the talks and in particular do not
give full proofs of all results but rather aim to illustrate the key ideas and techniques.

1 Introduction

Throughout the notes H(−) denotes singular cohomology. Coefficients are taken in Q unless
stated otherwise. By T = T r = S1 × . . . × S1 we will denote the compact torus of dimension
r and X will denote a topological space (which will most of the time assumed to be a finite
CW-complex).

Definition 1.1. An action of T on X is called (almost) free if for any x ∈ X the stabilizer
Tx = {t ∈ T | tx = x} is trivial (finite).

The very naive geometric intuition is that in order for a rotation symmetry of a space to be
free, the space needs to rotate around a “hole”.

Example 1.2. Consider the action of T 2 on S3 ⊂ C2 given by (s, t) · (v, w) = (sv, tw). We
point out that the action is not free since there are two 1-dimensional orbits which are circles
around which the action rotates. If we force freeness of the action by removing these orbits
around which the action rotates then we generate cohomology (in fact the result is homotopy
equivalent to T 2).

The Idea of the toral rank conjecture is that (almost) free torus symmetries force big coho-
mology. One has dimH(T r) = 2r. Also T r acts freely on itself, setting the bar for a relation
between betti numbers and symmetry. As we will see later, some topological requirements on
X are necessary for such a connection to hold. We call such a space reasonable and, for the
purpose of these notes, take that to mean a finite CW-complexes (although generalizations are
possible).

Conjecture 1.3 (Halperin, [12]). Let X be a reasonable space with an almost free T r-action.
Then

dimH(X) ≥ 2r.

This conjecture is known as the Toral Rank Conjecture. We abbreviate it by TrRC (not to
be confused with the total rank conjecture about Betti numbers of modules!).

Remark 1.4. If G is a compact Lie group with maximal torus T r then dimH(G) = 2r. Hence
the TrRC implies the analogous conjecture for all other compact Lie groups: If G ↷ X almost
freely then dimH(X) ≥ dimH(G).
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We give a brief (and incomplete!) overview on the conjecture

� It is open! (and over 40 years old)

� Has been solved for some spaces: compact Kähler manifolds [3] (more generally weak
Lefschetz type cohomologically symplectic spaces [1]), compact homogeneous spaces [2]
and more generally certain 2-stage spaces [15], certain nilmanifolds [7], [6]

� Connections to Walkers solution of the total rank conjecture [18] solve the TrRC under
certain formality conditions [5]

� Allday and Puppe prove (see [4]) that in general one has a lower bound of 2r and of
2(r + 1) if r ≥ 3. Furthermore Hk(X) ̸= 0 for r + 1 different values.

� The TrRC holds for dimT ≤ 3 or dimX ≤ 7.

2 From geometry to algebraic topology

For every topological group G there is a universal principal G-bundle

G→ EG→ BG

where EG is contractible (unique up to equivariant homotopy equivalence)

Example 2.1. There is a free S1-action on S2n−1 ⊂ Cn by diagonal complex multiplication.
This induces a free action on S∞ = ES1 (weak topology). So we have BS1 = CP∞. For the
r-torus we consider the r-fold products ET r = (S∞)r, BT r = (CP∞)r.

Remark 2.2. ET provides a counterexample to the TrRC. It is however not reasonable.

If G ↷ X then consider the diagonal action on EG×X and consider the Borel construction
XG = (EG×X)/G. Then there is a fiber bundle

X → XG → BG

given by projection onto the first factor. It is called the Borel fibration.

Definition 2.3. HG(X) := H(XG) is the (Borel) equivariant cohomology.

We collect some properties:

� The map XG → BG induces a map H(BG)→ HG(X)

� A G-equivariant map X → Y induces

X

��

// XG

��

// BG

��

Y // YG
// BG

and hence a map HG(Y )→ HG(X) of H(BG)-algebras.

� HG(−) inherits all the nice properties from H(−) as a G-invariant open U ⊂ X induces
an open set UG ⊂ XG.

Example 2.4. � H(BT r) = H((CP∞)r) = Q[x1, . . . , xr] with xi in degree 2. We denote
this ring by R.
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� For single orbits T/U one has

(ET × T/U)/T = ET/U = BU.

In particular HT (∗) = H(T/T ) = R. If U is finite then we have U =∼= Zn1 × . . . × Znl

and BU ≃
∏
(S∞)/Zni

. In this case HT (T/U) = Q.

� If the action is free (and X is sufficiently nice) then the projection XT → X/T is a
homotopoy equivalence since it is a fiber bundle with contractible fiber ET . This gives a
partial proof of the Theorem below.

Theorem 2.5 (cf. [13]). Let X be a reasonable T -space. Then the action is almost free if and
only if dimHT (X) <∞.

Sketch of proof. Since X is reasonable we find a tube around every orbit O, i.e. an open set
U which deformation retracts equivariantly onto the orbit. Since the orbit has finite stabilizer
we have HT (U) = HT (O) = Q by Example 2.4. As X is compact we can cover X with n
such tubes and hence XT is covered by n open sets with trivial cohomology. Using relative cup
products one deduces that the maximal product length in HT (X) (of positive degree elements)
is bounded by n. In particular the image of R→ HT (X) is finite dimensional. The statement
now follows from the fact that HT (X) is finitely generated over R.

To justify the latter fact one uses the Serre spectral sequence of the Borel fibration. The
pageE2 = R⊗H(X) is finitely generated as an R-mo. Since R is noetherian the subquotients
Er and E∞ inherit this property. From this it follows that also HT (X) is finitely generated.

The other direction will be treated in the exercises.

This leads us to

Conjecture 2.6 (Version 2). If X → Y → BT r is a fibration with dimH(Y ) <∞ then

dimH(X) ≥ 2r.

As another consequence of Theorem 2.5 we obtain

Corollary 2.7. If X carries an almost free T r-action with r ≥ 1 then χ(X) = 0

3 From topology to commutative algebra

Our goal is to translate X → XT → BT into algebraic data. To do this we give a (criminally
brief) introduction to rational homotopy theory. We refer to [8] for an extensive treatment of
the subject. Furthermore [9, Chapter 7] discusses the applications to torus actions in more
detail.

Definition 3.1. A differential graded algebra (dga) is a cochain complex (A, d) which is an
algebra (over some ground field k) such that Ap ·Aq ⊂ Ap+q and d is a derivation, i.e. d(ab) =
da · b + (−1)|a|a · db where |a| denotes the degree ofa homogeneous element a. It is called
commutative (cdga) if xy = (−1)|x|·|y|yx.

We will furthermore assume all cdgas to be concentrated in nonnegative degrees.

Example 3.2. � Singular cochains C∗(X, k) with the cup product. Not commutative.

� H(X, k) with trivial differential. Commutative.
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� M manifold, k = R: the differential forms (Ω(M), d) are a cdga.

Definition 3.3. A morphism of (c)dgas (A, d) → (B, d) is a morphism of algebras which
preserves degrees and commutes with d. We call it a quasi isomorphism if it induces an iso-
morphism H(A)→ H(B). Two (c)dgas are called quasi isomorphic if there is a chain of quasi
isomorphisms

(A, d)→ • ← · · · ← • → (B, d).

As the cohomology of a space is always commutative it is natural to ask whether one can
find a commutative cochain model, i.e. whether C∗(X, k) is quasi isomorphic to a cdga. The
answer is in general negative (the Steenrod operations form an obstruction). However one has

Theorem 3.4 ([17]). There is a functor, the polynomial forms,

APL : Top→ Q-cdga

such that APL(X) is naturally quasi isomorphic to C∗(X;Q).

Amap f : X → Y of spaces is a rational equivalence if it induces an isomorphismH(X;Q)→
H(Y ;Q). We say a cdga (A, d) is 1-connected if H0(A) = Q, H1(A) = 0. We say that a space
X (resp. a cdga (A, d)) is of finite type if dimHk(X) <∞ (resp. dimHk(A) <∞). Now APL

induces a bijection

{1-connected finite type top. spaces} /Q-equiv. −→ {1-connected finite type cdgas}/quasi iso.

Remark 3.5. This statement can be improved to a statement on the equivalence of certain
homotopy categories. The condition on simply connectedness can be weakened as well (although
some condition on π1 remains).

The natural next question is whether we find a preferred kind of model in a given quasi
isomorphism type. This leads to the notion of (Sullivan) minimal models which we now define.

Let V be a graded vector space. The free graded commutative algebra over V is

ΛV = Exterior algebra(V odd)⊗ Symmetric algebra(V evem)

If a, b, c, . . . is a homogeneous basis of V we also write Λ(a, b, c, . . .). We use indices to specify
degrees unless stated otherwise.

Example 3.6. Λ(a2, b3) is generated over Q by

0 1 2 3 4 5 6 7 · · ·
1 a b a2 ab a3 a2b · · ·

We consider the following method of specifying a differential:

� Choose a decomposition V =
⊕∞

i=0 Vi into graded vector spaces (not necessarily the
cohomological degree)

� Set d(V0) = 0.

� If (ΛV≤k, d) is a cdga then choose any linear map d : Vk+1 → ker(d|ΛV≤k
). It extends

uniquely to a derivation d on ΛV≤k+1 s.t. d2 = 0.

Definition 3.7. A cdga (ΛV, d) as above (with V = V ≥1) is a Sullivan cdga. It is called
minimal if additionally d(V ) is contained in the set Λ≥2V of sums of products of at least 2
generators.
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Theorem 3.8. Every cdga (A, d) with H0(A) = Q admits a minimal Sullivan model, i.e. there
is a quasi isomorphism (ΛV, d)→ (A, d) from a minimal Sullivan cdga. The minimal model is
unique up to isomorphism

Definition 3.9. The minimal model of APL(X) is called the minimal model of X.

Remark 3.10. If X is simply connected then the minimal model (ΛV, d) determines X up to
rational equivalence. Furthermore one has V k ∼= πk(X)⊗Q.

Example 3.11. (i) Λ(x2, y2n+1), dx = 0, dy = xn+1 is given generated over Q by xk, xky,
k ≥ 0 where d vanishes on xk and d(xky) = xk+n+1. This is the minimal model of CP n.

(ii) The model of CP∞ is given by Λx with x in degree 2, dx = 0. The space BT r has model
R = Λ(x1, . . . , xr) where all xi live in degree 2 and dxi = 0.

(iii) An example of a non-minimal Sullivan cdga is Λ(x, y) with dx = 0, dy = x. It is quasi
isomorphic to Q.

Models can be tracked nicely through fibrations where the model of the total space is a
twisted tensor product of the models of fiber and base (see [8, Thm 15.3]). Applied to

X → XT → BT

this specializes to

Theorem 3.12. Let X be a T -space with minimal model (ΛV, d). Then there is a Sullivan model
for XT of the form (R⊗ ΛV,D) such that D|R = 0 and for v ∈ V D(v)− d(v) ∈ R+ ⊗ ΛV .

Conjecture 3.13 (Version 3). If (R ⊗ ΛV,D) is a Sullivan cdga with D|R = 0 and finite
dimensional cohomology then

dimH(ΛV, d) ≥ 2r

where d is the differential induced by D on (R⊗ ΛV )/R+ ⊗ ΛV ∼= ΛV .

Clearly for the Conjectures we have

Version 3⇒ Version 2⇒ Version 1

In fact if we restrict to X simply connected in version 1 and 2 and to V 1 = 0 in Version 3
then in addition to the above implications we have

Version 1⇒ Version 3.

Proposition 3.14 (cf. [9] Prop. 7.17). Given (R ⊗ ΛV,D), (ΛV, d) as in the Conjecture and
V 1 = 0, then we find a simply connected reasonable space with a free T r-action and model
(ΛV, d).

Sketch of proof. There is a space Y with model (R ⊗ ΛV,D) (this uses V 1 = 0). Since
dimH(Y ;Q) < ∞ we can take Y to be a finite CW-complex. Let y1, . . . , yr ∈ H2(Y,Z)
be integral classes lifting the generators of R = Λ(x1, . . . , xr) in H(Y ;Q) ∼= H(R⊗ ΛV ).

Now since BT = K(Zr, 2) the yi define a map f : Y ′ → BT which we use to obtain a
pullback T -bundle

T //

��

X //

��

Y

f
��

T // ET // BT

Studying models of pullback fibrations reveals that the model of X arises from (R⊗ΛV,D) by
dividing by the xi. Hence X has the desired model.
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4 Attacking the TrRC via cdgas

We define rk0(X) as the maximal r such that T r acts almost freely on a reasonable space which
is rationally equivalent to X. By what we have seen this is computable from the minimal
model (ΛV, d) of X. It is the maximal r such that one can deform d to a differential D on
Λ(x1, . . . , xr)⊗ ΛV with |xi| = 2, D(xi) = 0 such that dimH(Λ(x1, . . . , xr)⊗ ΛV ) <∞.

Example 4.1. X = S2n, then ΛV = Λ(a2n, b4n−1), da = 0, db = a2. What deformations are
possible on Λ(x2, a, b)? We cannot deform d on a for degree reasons. On b the only choice is
Db = a2 + αaxn + βx2n for α, β ∈ Q. But in any case

H(Λ(x, a, b)) = Q[x, a]/(a2 + αaxn + βx2n)

is infinite dimensional.

The naive takeaway is that one needs enough odd generators (geometrically π2n+1(X)⊗Q)
to kill the xi in cohomology. However the existence of the generators is not sufficient. The
following example illustrates another problem: the odd generators killing the xi can not be
“too involved” with the existing differential d.

Example 4.2. The model of the Heisenberg manifold M is Λ(a1, b1, c1) with d(a) = 0 = d(b)
and d(c) = ab. Possible deformations of D on Λ(x, a, b, c) are Da = λax, Db = λbx, and
Dc = ab+ λcx. However D

2 = 0 forces

0 = D2c = D(λcx+ ab) = Da · b− a ·Db = λaxb− λbxa

Hence λa = λb = 0. So only c is able to kill added generators in degree 2. In fact setting
λc = 1 works and leads to finite dimensional cohomology. But adding more xi in degree 2 leads
to infinite cohomology. Hence rk0(M) = 1.

Remark 4.3. As we have seen in the exercises it is in general not true that the cohomology of
a space with a free T r-action contains an exterior algebra on r-odd generators. Hence it is not
true that odd generators that contribute to killing the xi need to be completely untouched by
the differential.

We now try to make these ideas more precise in certain scenarios. We restrict, for the
remainder of the section, to simply connected spaces X with dimH(X) < ∞. There is a
phenomenon called rational dichotomy (cf. [8, Chapter IV]) stating that a space is either
rationally elliptic, i.e.

∞∑
k=2

dim(πk(X)⊗Q) <∞

or hyperbolic in which case
n∑

k=2

dim(πk(X)⊗Q)

grows exponentially in n.

Example 4.4. (i) Compact homogeneous spaces G/H are elliptic (see exercises).

(ii) Even though many interesting geometric examples elliptic “most” spaces are hyperbolic.
Examples are given by S2 ∨ S2 or CP 2#CP 2#CP 2.

Theorem 4.5 ([10]). If (ΛV, d) is an elliptic minimal model then dimV even ≤ dimV odd.
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Sketch of proof. Write V even = P and V odd = Q. Out of d we build the pure differential dσ on
ΛV with d(P ) = 0 and splitting ΛV = ΛP ⊕ΛP ⊗Λ≥1ΛQ we define dσ|V as d|V projected onto
the first factor.

A nontrivial fact which we are going to use without proof is that

dimH(ΛV, d) <∞⇐⇒ dimH(ΛV, dσ) <∞.

The !very rough! idea is that when having finitely many generators the polynomial ring ΛP is
the only problem for dimH(ΛV ) to be finite and that dσ is just as good at killing ΛP as d is
(see [8, Section 32]). Now (ΛV, dσ) is a complex

0← ΛP ← ΛP ⊗Q← ΛP ⊗ Λ2Q← · · ·

hence dim(ΛP/I) < ∞ where I is the ideal generated by dσ(Q). Writing ΛP = Q[y1, . . . , yk]
we find that the radical

√
I = (y1, . . . , yk) is maximal the height of the Ideal is ht(I) = k. It

follows from the Krull height theorem that I can not be generated by less than k elements.
Hence dimQ ≥ k.

Definition 4.6. For an elliptic space X we set χ(X) = dim(πeven(X)⊗Q)−dim(πodd(X)⊗Q).

Corollary 4.7 ([2]). An elliptic space X satisfies rk0(X) ≤ −χπ(X).

Proof. If (ΛV, d) is the minimal model ofX and r = rk0(X) then we find (Λ(x1, . . . , xr)⊗ΛV,D)
with finite cohomology. Hence

dimV even + r ≤ dimV odd.

Corollary 4.8. If X is a product of spheres then rk0(X) = χπ(X) is the number of odd spheres.
In particular the TrRC holds.

Lemma 4.9. Let (ΛV, d) = (Λ(x2k ⊗ ΛW,d) be minimal, dx = 0 and consider the induced
differential d on ΛW ∼= ΛV/(x). Then

dimH(ΛV, d) ≥ 2 dimH(ΛW, d)

Sketch of proof. Consider the extension Λ(x, y2k−1)⊗ ΛV with dy = dx. Then the projection

(Λ(x, y)⊗ ΛW,d)→ (ΛW, d)

is a quasi isomorphism (this can be shown e.g. via a spectral sequence comparison kind of
argument. One calls cdgas of the form (Λ(x, y), d) contractible has they are quasi isomorphic
to Q). We note that

Λ(x, y)⊗ ΛW = ΛV ⊕ y · ΛV
and the cohomology splits as H(ΛV )/(x)⊕ AnnH(ΛV )(x). This implies the lemma.

Corollary 4.10. The TrRC holds for elliptic spaces with pure minimal models i.e. models of
the form (ΛV, d) with d|V even = 0 and d(V odd) ⊂ ΛV even.

Proof. Let a = dimV even, b = dimV odd. The Quotient ΛV/ΛV even has trivial differential and
Lemma 4.9 yields

2b = dimH(ΛV/ΛV even)⇒ dimH(ΛV ) ≥ 2b−a ≥ 2rk0(ΛV,d).
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5 The minimal Hirsch-Brown model

Idea: Given a T -spaceX with minimal model (λV, d), the model (R, 0)→ (R⊗ΛV,D) forBT ←
XT contains all necessary topological information to prove the TrRC (if it is true). It is in some
sense the “best” cdga model. However it is hard to access H(X) = H(ΛV, d). An alternative
idea is to simplify the model and –although potentially losing important information– making
the problem more accessible. We do this by considering R⊗ΛV as a differential graded R-model.

Definition 5.1. A dg R-module is minimal if it is of the form (R⊗W,d) with d(W ) ⊂ R+⊗W .

Proposition 5.2. (i) Any dg-R-module (M,d) has a minimal model

(R⊗W,d)
quasi iso.−−−−−→ (M,d)

unique up to isomorphism.

(ii) The minimal model of R⊗ ΛV as above is of the form (R⊗H(X), d)

Very rough sketch. For existence in (i) several different techniques can be used. If cohomology
is bounded from below an inductive procedure akin to the one discussed for Sullivan minimal
models in the exercises gives a very easy construction. Uniqueness requires some homotopy
theory of dg-modules. Another method of construction is to consider the differential 1 ⊗ d
on R ⊗ ΛV and “compress” the structure into the cohomology R ⊗ H(X) (see e.g. [11], [4,
Appendix B]). This leads to (ii).

The model (R⊗H(X), d) is called the minimal Hirsch-Brown model of the action.

Remark 5.3. (i) It is in general not true that a dg-module over R = Q[x1, . . . , xr] with
dimQH(R⊗W ) <∞ satisfies dimW ≥ 2r [14]. This would have implied the TrRC!

(ii) R ⊗ H(X) is not a cdga but there are traces of multiplicativity left in the form of C∞-
structures. The counterexamples do not carry these and do not disprove the TrRC.

Definition 5.4. A space X is called formal if APL(X) is quasi isomorphic to (H(X), 0)

A formal space can be viewed as being as simplest kind of space with a given cohomology
algebra (from the viewpoint of rational homotopy theory). [5] study actions with certain for-
mality properties where connections to the Buchsbaum-Eisenbud-Horrocks-conjecture arise. In
particular the following holds:

Theorem 5.5. If T r acts almost freely on a reasonable space X and XT is formal then
dimH(X) ≥ 2r.

Proof. Let (R⊗ΛV,D) be the model of XT r . Then by assumption there are quasi isomorphisms

(R⊗H(X), d)→ (R⊗ ΛV,D)→ (H(XT ), 0)

of dg R-modules where the left hand side is the minimal Hirsch-Brown model. In particular
(R ⊗ H(X), d) is also the minimal dg R-module model of (H(XT ), 0) which is given by its
minimal free resolution. Now by Walkers solution of the total rank conjecture [18] dimH(X) ≥
2r.
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The question remains what we can say in full generality without additional assumptions.
The following discussion is due to Allday and Puppe [4],[16]. For a minimal Hirsch-Brown
model (R⊗H(X), d) of an almost free T r-action set F0 = {x ∈ H(X) | dx = 0} and Fi = {x ∈
H(X) | d(x) ∈ R⊗ Fi−1}. This gives a filtration of H(X) and R⊗H(X).

For N ≥ 0 we consider the Koszul complex KN = (R ⊗ Λ(sN1 , . . . , s
N
r ), d), where |sNi | =

2N + 1 (the exponent N just indicates the degree and is not a power) and dsNi = xN+1
i

Proposition 5.6. For N >> 0 there are dg R-module maps

KN
α−→ (R⊗H(X), d)

β−→ K0

mapping 1 7→ 1 and β(R⊗ Fi) ⊂ R⊗ Λ≤i(s01, . . . , s
0
r).

Proof. For β choose any map F0 → ⟨1K0⟩Q with 1 7→ 1. If β has been constructed on Fi write
Fi+1 = Fi ⊕ W and let a1, . . . , al be a basis of W . Now dαj ⊂ R ⊗ Fi is closed and so is
β(daj) ⊂ Λ≤i(s01, . . . , s

0
1). Since H(K0) = Q we find some bj ∈ Λ≤i+1(s01, . . . , s

0
r) with dbj = aj.

Now define β(aj) = bj. The construction of α is analogous using that the cohomology in the
middle vanishes for sufficiently high degrees.

Question: What can we say about dg-R-module maps KN
γ−→ K0 with 1 7→ 1?

Note that dimH(X) ≥ rkR(γ). In general one does not have rk(γ) ≥ 2r but the technique
is still promising. In particular as (ii) below suggests, multiplicative aspects might lead to
improved bounds (note that the proofs below do not make use of any multiplicative structure
besides the R-module structure!) We write sNij for sNi · sNj etc.

Theorem 5.7. (i)
γ(sN1...r) /∈ R⊗ Λ≤r−1(s01, . . . , s

0
r)

As a consequence F0 ⊊ F1 ⊊ . . . ⊊ Fl = H(X) has length l ≥ r.

(ii) If γ is a cdga map, then it is injective.

(iii) γ is injective on
R⊗ ⟨sN1 , . . . , sNr , sN123⟩

As a consequence

dimH(X) ≥

{
2r

2r + 1 if r ≥ 3

Partial proof. Assuming (i) in particular γ(f ·sN1...r) ̸= 0 for any f ∈ R. But any a ∈ KN admits
b s.t. ab = fsN1...r. Hence if γ is multiplicative it follows that γ(a) · γ(b) = γ(ab) ̸= 0 proving
(ii).

For (iii) given any γ : KN → K0 take β : KN → K0 to be the cdga map with β(si) =
γ(si) (and extend multiplicatively). Then β is injective by (ii) and hence γ is injective on
R⊗ ⟨sN1 , . . . , sNr ⟩. Adding the extra sN123 requires some more work (see [16]).

Regarding (i) we note that there is only 1 nontrivial homotopy class KN → K0 ≃ Q with
1 7→ 1. Consequently γ is homotopic as a dg R-module map to the cdga map β : KN → K0

with β(sNi ) = xN
i s

0
i . Hence γ induces the same map as β on

H(KN/(x
N+1
1 , . . . , xN+1

r )→ H(K0/(x
N+1
1 , . . . , xN+1

r ))

The class of sN1...r on the left maps to the class of xN
1...rs

0
1...r on the right. Hence γ(sN1...r) is given

by xN
1...rs

0
1...r up to multiples of xN+1

i and elements in im(d) ⊂ Λ≤r−1(s01, . . . , s
0
r) and is thus

nonzero in K0/(R⊗ Λ≤r−1(s01, . . . , s
0
r))
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