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UCT

1. An introduction to the Universal Coefficient Theorem /
Eilers

This is an introduction to the UCT of Rosenberg and Schochet, its im-
portance in particular in classification, its various generalizations, and the
open questions concerning the class of C∗-algebras to which it applies.

Classical
Rosenberg and Schochet proved that a particular class of C∗-algebras

satisfy the Universal Coefficient Theorem in KK-theory. Through out the
paper, they assume that the C∗-algebra A is separable nuclear, and the
C∗-algebra B has a countable approximate unit.

Let N be the smallest full subcategory of the separable nuclear C∗-
algebras which contains the separable Type I C∗-algebras and is closed under
strong Morita equivalence, inductive limits, extensions, and crossed products
by R and Z.

Theorem (UCT). Let A ∈ N . Then there is a short exact sequence

0 −→ Ext1Z(K∗(A),K∗(B))
δ−→ KK∗(A,B)

γ−→ Hom(K∗(A),K∗(B)) −→ 0

which is natural in each variable. The map γ has degree 0 and the map δ
has degree 1.

Proof. We consider

γ(A,B) : KK∗(A,B)→ Hom(K∗(A),K∗(B))

• IfK∗(B) is injective, I/A, and two out of γ(I, B), γ(A,B), γ(A/I,B)
are isomorphisms, so is the last.
• If K∗(B) is injective, A = lim−→Ai, and all γ(Ai, B) are isomorphisms,

so is γ(A,B).
• If K∗(B) is injective then γ(C0(X), B) is an isomorphism.
• If K∗(B) is injective and A is type I then γ(A,B) is an isomorphism.
• If K∗(B) is injective, and A ∈ N , then γ(A,B) is an isomorphism.
• For any σ-unital B there is ϕ : B → D with K∗(D) injective and
ϕ∗ : K∗(B)→ K∗(D) injective.

�

Remark: The authors noted that it was quite possible that the UCT
holded for completely arbitrary separable C∗-algebras A, assuming that B
has a countable approximate unit. An interesting open problem was to deter-
mine whether the UCT might in fact holded for all separable C∗-algebras.
This was shown to be equivalent to the question: is every separable C∗-
algebra KK-equivalent to a commutative C∗-algebra? However, later work
of Skandalis showed that this was not the case, though this may be true for
separable nuclear C∗-algebras.

Proposition (RS). If A ∈ N , then A is KK-equivalent to some C0(X).
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Theorem (Skandalis). The following are equivalent for a separable A (not
necessarily nuclear!)

(1) The UCT holds for A and any B
(2) A is KK-equivalent to some C0(X)
(3) If K∗(B) = 0, then KK(A,B) = 0

and there is a non-nuclear A for which they are false.

Modern

Theorem (Elliott). For A and B AT -algebras of real rank zero, we have

A⊗K ∼= B ⊗K⇔ (K∗(A),K∗(A)+) ∼= (K∗(B),K∗(B)+)

Theorem (UMCT, Dadarlat- Loring). For A ∈ N we have

Pext(K∗(A),K∗(B)) Hom(K∗(A),K∗(B))

KK(A,B)

Ext(K∗(A),K∗(B)) HomΛ(K(A),K(B))

Theorem (Dadarlat-Loring). For A and B AD-algebras of real rank zero,
we have

A⊗K ∼= B ⊗K⇔ (K(A),K(A)+) ∼= (K(B),K(B)+)

Theorem (Kirchberg-Phillips). Suppose A and B are simple, separable,
nuclear, purely infinite C∗-algebras. If A and B are KK-equivalent, then
A⊗K ∼= B ⊗K.

Theorem (Kirchberg-Phillips). Suppose A and B are simple, separable,
nuclear, purely infinite C∗-algebras with A,B ∈ N . Then

A⊗K ∼= B ⊗K⇔ K∗(A) ∼= K∗(B).

Contemporary

Theorem (Tikuisis-White-Winter). If A is separable, nuclear and satisfies
the UCT, then any amenable trace on A is quasidiagonal.

Theorem (Dadarlat). If A is separable, exact, residually finite-dimensional
and satisfies the UCT, then A is AF-embeddable.

New classes
A satisfies the UCT when

• A = C∗(G) for certain amenable groupoids G (Tu)
• A may be locally approximated with UCT subalgebras (Dadarlat)
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• A = C∗π(G) for nilpotent group (Eckharadt-Gillaspy)
• A has a Cartan subalgebra (Barlak-Li).

Localizations The UCT holds for all nuclear C∗-algebras if O2 is unique
withK∗(O2) = 0 among the purely infinite, nuclear C∗-algebras (Kirchberg).

Theorem (Kirchberg). Suppose A and B ar separable, nuclear, purely in-
finite C∗-algebras with

Prim(A) ∼= X ∼= Prim(B).

If A and B are KK(X)-equivalent, then A⊗K ∼= B ⊗K.

Theorem (Meyer-Nest,Bentmann-Köhler). Suppose A and B are separable,
nuclear, purely infinite C∗-algebras with A,B ∈ N and

Prim(A) ∼= X ∼= Prim(B)

with X a finite accordion space. Then,

A⊗K ∼= B ⊗K⇔ K∗(X,A) ∼= K∗(X,B).
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2. Elements of KK theory and UCT / Dadarlat

In this section we assume that A is always a separable C∗-algebra and B
a σ-unital C∗-algebra.

Object of Interest: To study topological invariants of C∗-algebras. A
first attempt would be to consider the ∗-homomorphisms φ : A→ B but in
many cases they don’t seem to be enough to implement topological informa-
tion about A and B. KK-theory is a theory of generalised ∗-homomorphisms
that gives valuable topological information. It is a bivariant theory in the
sense that it combines K−theory and K-homology. Let’s see the ”trivial”
but enlighting case of KK(C,C) ∼= Z.

(1) K-theory picture: Consider the Murray-von Neumann classes of
finite dimensional projections e, f ∈ L(H). Then dim(e)−dim(f) =
[e]− [f ] ∈ KK(C,C).

(2) K-homology picture: Consider the homotopy classes of Fredholm
operators T ∈ L(H). Then Index(T ) = dim ker(T )− dim ker(T ∗) =
dim(e)−dim(f) ∈ KK(C,C) for some projections e, f as above that
ker(T ) = Im(e) and ker(T ∗) = Im(f).

Hilbert C∗−modules
Consider E to be a right B-module.

Definition. E is a right Hilbert B-module if there exists a map < ·, · >:
E × E → B such that:

• it is linear in the second variable and anti-linear in the first;
• < η, ξb >=< η, ξ > b;
• < η, ξ >∗=< ξ, η >;
• < η, η >≥ 0 and equals 0 iff η = 0;

• E is complete w.r.t ‖ξ‖ = ‖ < ξ, ξ > ‖ 1

2 .

Examples:

• B = C, then E is a Hilbert space.
• E = B with < b1, b2 >= b∗1b2.
• E = Bn with < a, b >=

∑n
i=1 a

∗
i bi.

• E = eBn ⊂ Bn for e ∈ Mn(B) with the above inner product. If
e is a projection then eBn is a projective Hilbert B-module since
eBn ⊕ (1n − e)Bn = Bn. Consider X to be a compact Hausdorff
space and B = C(X). Then any complex vector bundle over X
corresponds to a projective C(X)-module.
• E / B with the above inner product.

Theorem (Absorption Theorem / Kasparov). If E is a countably gener-
ated Hilbert B−module then E ⊕ HB

∼= HB where HB = {b ∈ ∏∞
i=1B :∑∞

i=1 b
∗
i bi <∞} =

⊕∞
i=1B.
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Let E,F be two Hilbert B−modules. Define

L(E,F ) = {T : E → F : linear, adjointable}
and K(E,F ) = {θξ,η = η < ξ, · >: ξ ∈ E, η ∈ F} where they are considered
to be the ”compact operators”. If E = F then these are C∗ − algebras.

Facts:

• K(B) ∼= B, by multiplication operators Mx : B → B, b 7→ xb for
x ∈ B.
• L(B) ∼=M(B).
• Kasparov: M(K(E)) ∼= L(E). In particular, M(B ⊗K) ∼= L(HB).

Definition (According to Atkinson’s Theorem). An S ∈ L(E(0), E(1)) is

”Fredholm” if there exists T ∈ L(E(1), E(0)) such that 1−TS ∈ K(E(0)) and

1− ST ∈ K(E(1)).

If Im(S) is a closed B-module, then kerS and kerS∗ are f.g projective
B-modules and hence we can define Index(S) = [kerS]− [kerS∗] ∈ K0(B).

Remark. Actually we don’t need to assume that Im(S) is closed since in

general there is a compact perturbation S′ of S⊕1 : E(0)⊕HB → E(1)⊕HB

such that Im(S) is closed. Hence Index(S) = Index(S′) ∈ K0(B).

KK-groups

Definition ( Kasparov bimodules). Let A,B be graded. An (A,B)-bimodule
is a countably generated graded Hilbert C∗-module over B acted upon by A
through a grading preserving ∗-homomorphism π : A → L(E). A Kasparov
(A,B)-bimodule is a triple (E, π, F ) where E is an (A,B)−bimodule, F ∈
L(E) is of odd degree such that for every a ∈ A

• [π(a), F ] ∈ KB(E);
• π(a)(F 2 − 1) ∈ KB(E);
• π(a)(F ∗ − F ) ∈ KB(E).

The triples are called degenerate if the bullets are identically zero. We denote
the set of Kasparov (A,B)−bimodules by E(A,B).

We say that two Kasparov (A,B)-bimodules are isomorphic (') if there is
an isomorphism of Hilbert B- modules that intertwines the gradings, the rep-
resentations and the operators of the triples. Denote by B[0, 1] = C([0, 1], B)
and define a homotopy between two elements x0, x1 ∈ E(A,B) as an ele-
ment y ∈ E(A,B[0, 1]) such that (ev0)∗(y) ' x0 and (ev1)∗(y) ' x1. We
consider the transitive closure of homotopy and get an equivalence relation
on E(A,B) which we denote by ∼ . Degenerate Kasparov bimodules are
equivalent to zero. It is weaker than isomorphism. There is also another
notion of homotopy on E(A,B) called operator homotopy. In this we focus
entirely on the operators of the triples and we say that x0, x1 are operator
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homotopic if there is a norm-continuous path Ft = (G, ρ, Ft) in E(A,B) such
that F0 ' x0 and F1 ' x1. With an additional assumption we can turn it
into an equivalence relation which we denote by ≈. This is stronger than ∼
and weaker than isomorphism. We can form the direct sum of two Kasparov
(A,B)−bimodules:

(E, π, F )⊕ (E′, π′, F ′) = (E ⊕ E′, π ⊕ π′, F ⊕ F ′)

which is well-defined on E(A,B)/ ∼. Moreover, we can form the inverse of
x = [E, π, F ] as x′ = [Eopp, πopp,−F ] since x⊕x′ = [degenerate] = [0] where
the operator homotopy is given by Gt = (E ⊕ Eopp, π ⊕ πopp, Gt) and

Gt =

(
Fcosπ2 t sinπ

2 t
sinπ

2 t −Fcosπ2 t

)

Actually one can prove that the operator homotopy and homotopy induce
isomorphic abelian groups and we define the

KK(A,B) = E(A,B)/ ∼
∼= E(A,B)/ ≈ .

We note that KK(C, A) = K0(A) and KK(A,C) = K0(A).

Kasparov Product
Kasparov product is a bilinear operationKK(D,A)×KK(A,B)→ KK(D,B)
which has the following properties:

• naturality;
• associativity;
• functoriality in all possible ways.

Roughly speaking, this corresponds to a ”product” of Fredholm operators
F#F ′ such that Index(F#F ′) = Index(F )Index(F ′). This is the case for
KK(C,C).

With that we can talk about the KK-category (an additive category) and
the KK-functor from C∗ → KK is:

• homotopy invariant in both variables;
• stable;
• split-exact.

Actually a theorem of Higson characterises the KK-functor as being uni-
versal amongst the homotopy invariant, stable and split exact additive func-
tors on the category of separable C∗-algebras, in the sense that if F : C∗ → A
(A is an additive category) is such a functor then there exists a unique func-
tor F ′ : KK → A such that F ′ ◦KK = F . Any such functor satisfies Bott
periodicity.

Given a semi-split short exact sequence of separable C∗-algebras

0→ J → A→ A/J → 0
8
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we get a six-term exact sequence in both variables for any separable C∗-
algebra D in the other variable. We can extend this to σ−unital J,A,A/J
if we consider D on the left and to σ−unital D if we consider it to the right.

The KK-functor is σ-additive in the first variable;

KK(

∞⊕

n=1

An, B) ∼=
∞∏

n=1

KK(An, B)

but not in the second variable in general.
The KK-functor is contravariant in the first variable and covariant in the

second, as does the Hom functor. Actually, the Kasparov product allows us
to relate the two functors:

Note:From now on, A and B are trivially graded.
Consider the homomorphism

⊗(·) : KK∗(A,B)→ Hom(KK∗(D,A),KK∗(D,B))

and for D = C we get the map

γ(A,B) : KK∗(A,B)→ Hom(K∗(A),K∗(B)).

Let N be the smallest full subcategory of the separable nuclear C∗-algebras
which contains the separable Type I C∗−algebras and is closed under strong
Morita equivalence, inductive limits, extensions, and crossed products by R

and Z. The Universal Coefficient Theorem (UCT) is the following:

Theorem (Rosenberg, Schochet). Let A and B be separable C∗−algebras,
with A ∈ N . Then there is a short exact sequence

0 −→ Ext1Z(K∗(A),K∗(B))
δ−→ KK∗(A,B)

γ−→ Hom(K∗(A),K∗(B)) −→ 0

The map γ has degree 0 and δ has degree 1. The sequence is natural in each
variable, and splits unnaturally. So if K∗(A) is free or K∗(B) is divisible,
then γ is an isomorphism.

Write KK1(A,B) = KK(A,B ⊗ C1) and

γ1(A,B) : KK1(A,B)→ Hom(K0(A),K1(B))⊕Hom(K1(A),K0(B)).

We use the fact that KK1(A,B) ∼= Ext(A,B). For an extension

x : 0→ B → E → A→ 0

we have γ1(A,B)(x) = δ0(x) ⊕ δ1(x) where δ0(x) : K0(A) → K1(B) and
δ1(x) : K1(A) → K0(B) are the boundary maps of the corresponding six-
term exact sequence in K-theory. Hence if x ∈ ker γ1(A,B) then δ0(x) and
δ1(x) are zero and consequently we get

0→ K∗(B)→ K∗(E)→ K∗(A)→ 0,

that is, an element in Ext1Z(K∗(A),K∗(B)). Denote this map by

k1 : ker γ1(A,B)→ Ext1Z(K∗(A),K∗(B)).
9
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This is a degree 0 map and one of the goals, for such A and B, is to prove
that k1 is bijective. Then by suspending again we get

k0 : ker γ0(A,B)→ Ext1Z(K∗(A),K∗(B))

which is a degree 1 map and hence k = k0 ⊕ k1 is a degree 1 map. Thus we
get the map δ.

Definition. A separable C∗-algebra A is in the UCT class if for every σ-
unital C∗-algebra B we have that γ(A,B) is surjective and k is bijective.

The proof of UCT will be in two parts: a special case where K∗(B) is
divisible and a general case by using geometric resolution of C∗-algebras.

Special Case of UCT
First a quick recap on Milnor lim1-sequence and divisible groups:

Let

. . .→ Gn
fn−1−−−→ Gn−1 → . . .→ G2

f−→ G1

be a projective system of abelian groups. Then we get

0→ lim
←−

Gn →
∞∏

n=1

Gn
I−S−−−→

∞∏

n=1

Gn → lim1

←−
Gn → 0

where I − S : (λn)
∞
n=1 7→ (λn − fn(λn+1))

∞
n=1 and lim1

←−
Gn := coker(I − S).

With this, for an inductive limit A1 → A2 → . . . of nuclear C∗-algebras
we get the mapping telescope sequence:

0→ lim1

←−
KK1(An, B)→ KK(lim

−→
An, B)→ lim

←−
KK(An, B)→ 0.

Definition. An abelian group G is divisible if G = nG for every n ≥ 1.

Proposition. The following are equivalent:

• G is divisible;
• G is injective1;
• Hom(·, G) is exact;
• Ext1Z(·, G) = 0.

Suppose that
0→ B → X → Y → 0

is a short exact sequence of abelian groups. Then for any abelian group A
we get

0 Hom(A,B) Hom(A,X) Hom(A, Y )

Ext1Z(A,B) Ext1Z(A,X) Ext1Z(A, Y ) 0

1Injectivity means than we can extend homomorphisms that map into G from sub-
groups to groups in a unique way.
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by using the snake lemma. If X,Y are injective; this means, we get an
injective resolution for B, then Ext1Z(A,X) and Ext1Z(A, Y ) vanish. And
this completes the recap.

Suppose that K∗(B) is divisible, then Ext1Z(K∗(A),K∗(B)) = 0. Hence
we investigate if γ(A,B) is an isomorphism. To do that we compare the two
functors KK∗(·, B) and Hom(K∗(·),K∗(B)). Note that both are σ-additive
cohomology theories on separable C∗-algebras and general C∗-algebras re-
spectively.

Then let N ′ be the smallest class of separable C∗-algebras A for which
γ(A,B) is an isomorphism. ThenN ′ contains C sinceKKi(C, B) = Ki(B) =
Hom(Z,Ki(B)). Using the five lemma one can show that if two of A, J and
A/J are in N ′ then so is the third and also an application of the five lemma
to the lim1-sequences yields that N ′ is closed under inductive limits. Fi-
nally, the naturality of the intersection product shows that N ′ is closed
under KK-equivalence. Hence N ′ contains N and the special case of the
UCT is proved.

General case of UCT

Proposition. Let A be a separable C∗-algebra such that γ(A,B) is an iso-
morphism for all B separable with K∗(B) divisible. Then A is in the UCT
class.

Proof. We will make use of geometric injective resolutions. Given B sepa-
rable C∗-algebra we construct a semisplit extension

0 D C SB 0α β

such that K∗(D) and K∗(C) are divisible and β∗ = 0. Hence the six-term
exact sequence unsplices to two short exact sequences

0 Ki+1(SB) Ki(D) Ki(C) 0
α∗

Applying the Hom(K∗(A), ·) functor we get

0 Hom(K∗(A),K∗(B)) Hom(K∗(A),K∗(D))

Hom(K∗(A),K∗(C)) Ext1Z(K∗(A),K∗(B)) 0

Hom(1,α∗)

kerHom(1, α∗) = Hom(K∗(A),K∗(B))

cokerHom(1, α∗) = Ext1Z(K∗(A),K∗(B)).

Now we consider the six-term exact sequence with the following squares:
11
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Hom(K∗(A),K∗(D)) Hom(K∗(A),K∗(C))

KK∗(A,D) KK∗(A,C) KK∗(A,SB)

KK∗+1(A,SB) KK∗+1(A,C) KK∗+1(A,D)

Hom(K∗(A),K∗(C)) Hom(K∗(A),K∗(D))

Hom(1,α∗)

ω

γ(A,D) γ(A,C)

γ′(A,C)

ω

γ′(A,D)

Hom(1,α∗)

where γ′ is the odd degree version of γ.
The six-term exact sequence unsplices and we get

0 cokerω KK∗+1(A,SB) kerω 0

and since the corner squares commute and γ(A,C), γ(A,D) are isomor-
phisms we get that

kerω ∼= kerHom(1, α∗)

cokerω ∼= cokerHom(1, α∗).

One can see that the map KK∗+1(A,SB) → Kerω ∼= kerHom(1, α∗) =
Hom(K∗(A),K∗(B)) is γ(A,B) and thus we get

0→ Ext1Z(K∗(A),K∗(B))
δ−→ KK∗(A,B)

γ(A,B)−−−−→ Hom(K∗(A),K∗(B))→ 0

where δ is the inverse of k.
�

So we have reduced the problem to the construction of a geometric injec-
tive resolution for any separable B.

Construction of Geometric resolution
Given an abelian group G we can construct an injective resolution easily.

Let f : F0 → G be a homomorphism of a free abelian group onto G and let
F1 = kerf . Then F1 is also free and G ∼= F0/F1. Let g be the composition
homomorphism

G F0/F1 (F0 ⊗Q)/F1 := I0
∼=

Then g is injective and I0 is divisible as a quotient of the divisible F0 ⊗Q.
Let I1 = I0/G. Then

0 G I0 I1 0
12
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is the required injective resolution. The proof for the geometric resolution
uses the same idea but the construction starts on the C∗-algebraic level.
Recall that given a ∗-homomorphism f : A→ B the mapping cone

Cf = {(ξ, a) ∈ BI ⊕A : ξ(0) = 0, ξ(1) = f(a)}.
There is a natural map Cf → A given by (ξ, a) 7→ a and the resulting
”mapping cone sequence”

0 SB Cf A 0

is semisplit where the c.p map A→ Cf is given by a 7→ (a, (1− t)f(a)).
Theorem. Let B be a separable C∗-algebra. Then there exists a sepa-
rable C∗-algebra D whose K-groups are divisible and a ∗-homomorphism
f : SB → D such that the induced map

K∗+1(B) = K∗(SB)
f∗−→ K∗(D)

is injective.

The theorem implies the existence of a geometric resolution by just con-
sidering the mapping cone sequence for f :

0 SD Cf SB 0

and since f∗ is injective, the six-term exact sequence inK-theory degenerates
to

0 K∗(SB) K∗(D) K∗+1(Cf) 0

and since K∗+1(Cf) is a quotient of a divisible group then itself is divisi-
ble.

Proof. It suffices to assume that B is unital since the unitalisation map B →
B+ induces an inclusion in the K-theory. So let B be a unital C∗-algebra.
Then, just like in the proof of the Künneth theorem we can construct a
projective resolution for B. That is, we construct a commutative C∗-algebra
F withK∗(F ) being free abelian and a ∗-homomorphism r : F → B⊗K such
that it induces a surjective map on K-theory. The mapping cone sequence

0 SB ⊗K Cr F 0s

yields a degenerate K-theory sequence of the form

0 K∗(Cr) K∗(F ) K∗(B ⊗K) 0
s∗ r∗

since r∗ is surjective and r∗ is actually the composition

K∗(F ) K∗+1(SB ⊗K) K∗(B ⊗K).∂ ∼=

Let N be a unital AF-algebra with K0(N) = Q. (Take for instance
N = lim

−→
(M2⊗ . . .Mn!) with the obvious maps.) Let t : F → F ⊗N given by

t(x) = x⊗1. Then the induced map t∗ : K∗(F )→ K∗(F ⊗N) ∼= K∗(F )⊗Q

is injective and K∗(F ⊗N) is divisible. To see the last isomorphism one can
13
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use the Künneth theorem. The mapping cone sequence for ts : Cr → F ⊗N
has associated degenerate K-theory sequence

0 K∗(Cr) K∗(F ⊗N) K∗(Cts) 0
(ts)∗

for (ts)∗ = t∗s∗ is injective, and we are half way there since we get an
injective resolution of K∗(Cr). Using the naturality of the cone construction
we get a map of mapping cone sequences

SCr SF Cs Cr F

SCr SF ⊗N Cts Cr F ⊗N
u

s

t

s

a hence a commuting diagram of short exact sequences

0

0 K∗(Cr) K∗(F ) K∗(Cs) 0

0 K∗(Cr) K∗(F ⊗N) K∗(Cts) 0

∼= t∗ u∗

The five lemma implies that u∗ : K∗(Cs)→ K∗(Cts) is injective. Actually,
we can related SB ⊗ K to Cs in the following way: Since SB ⊗ K is the
kernel of s : Cr → F we get a short exact sequence

0 SB ⊗K Cs CF 0v

where the map Cs → CF is given simply by (ξ, a) 7→ ξ and its kernel
identifies with SB ⊗ K. Therefore, we get an isomorphism v∗ : K∗(SB ⊗
K)→ K∗(Cs) and if we consider an inclusion w : SB → SB ⊗K we define
f to be the composition

SB SB ⊗K Cs Cts := D.w v u

Then f∗ = u∗v∗w∗ is injective and K∗(D) is divisible. This completes the
proof.

�

Universal Multi-Coefficient Theorem
We now describe the UMCT of Dadarlat and Loring and give a sketchy

proof of the fact that a separable C∗-algebra A satisfies the UCT if and
only if it satisfies the UMCT. A quick recap: A finitely generated abelian
group is of the form Zk ⊕ Zp1 ⊕ . . .Zpr where pi are prime numbers. Let
P = {powers of prime numbers}∪{0}. We defineK-theory with coefficients;
that is , we define groups K0(A;Zp) and K1(A;Zp).

14
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Take p ∈ P \ {0} and consider the diagonal inclusion i : C→Mp(C). Let
Ip be the mapping cone for i and define I0p = Ip and I1p = SIp. For the
mapping cone we get a short exact sequence

0 SMp(C) Ip C 0i

to which we apply KK(·, A) and we get the six-term exact sequence

K0(A) K0(A) K0(A;Zp)

K1(A;Zp) K1(A) K1(A)

Goal: To study the map KK(A,B)→ Hom(K∗(A;Zp),K∗(B;Zp)) that
comes from the Kasparov product.

From now on p, q ∈ P and i ∈ {0, 1}.
Define K(A) :=

⊕
p,iKK∗(I

i
p, A) and let Λ =

⊕
p,qKK∗(Ip, Iq). Λ is

a ring with structure from KK∗(
⊕

p Ip,
⊕

q Iq) ⊃ Λ. Then K(A) is a left
Λ-module with multiplication coming from the Kasparov product. Finally,
we define the map

Γ : KK(A,B)→ HomΛ(K(A),K(B)).

This will be the map that corresponds to γ in the UCT.

Theorem (UMCT). Let A,B be C∗-algebras. Suppose that A ∈ N and B
is σ-unital. Then there is a short exact sequence

0→ Pext(K∗(A),K∗(B))→ KK(A,B)
Γ−→ Hom(K(A),K(B))→ 0

which is natural in every variable.

Note: Pext(K∗(A),K∗(B)) is the subgroup of Ext1Z(K∗(A),K∗(B)) con-
sisting of pure extensions; that is, extensions

0→ K∗(B)→ G
p−→ K∗(A)→ 0

such that for every finitely generated subgroup H of K∗(A) there is a ho-
momorphism j : H → G such that p ◦ j = id. Realising KK(A,B) as
extensions of SA by B one can prove, as in the UCT case, that ker Γ =
Pext(K∗(A),K∗(B)).

Lemma. If A belongs to the UCT class and K∗(A) is finitely generated then
Γ is an isomorphism of groups for every σ-unital B.

Proof. From the assumptions we may assume that A ∼KK
⊕

p,i I
i
p where

p varies in a finite set. By additivity we may further assume that A = Iip.
Now,

Γ : KK(Iip, B)→ HomΛ(K(I ip),K(B)).
15
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Let xip = 1 ∈ KK(Iip, I
i
p). An element a ∈ HomΛ(K(Iip),K(B)) is com-

pletely determined by the image of xip 7→ a(xip) ∈ KK(Iip, B). Since the

Kasparov product respects the unit we get that Γ(a(xip)) = a.
�

Conversely:

Proposition. If a separable A is in the UMCT class then A is in the UCT
class.

Proof. For that, we use the fact that A satisfies the UCT if and only if
KK(A,B) = 0 for every separable B with K∗(B) = 0. Using the the
mapping cone sequence above and the six-term exact sequence for KK(·, B)
we get that K∗(B;Zp) = 0 and hence K(B) = 0. Using the UMCT short
exact sequence we get that KK(A,B) = 0. �

Finally, we introduce a new topological invariant that is defined on pairs
of C∗-algebras (separable/σ-unital) that is homotopy invariant in each vari-
able, stable and split-exact, and that is a also a polish group. First a quick
recap:
We consider extensions in terms of Busby invariants. So, let τ : A→ Q(B)
be such. We say that it is trivial if it lifts to a ∗-homomorphism to M(B).
We say that τ is stably trivial if there is a trivial τ ′ such that τ ⊕ τ ′ is
trivial. We say that τ is approximately trivial if there is a sequence (τ)n
of trivial Busby invariants such that ‖τn(a) − τ(a)‖ → 0. We say that τ
is stably approximately trivial if there is a trivial τ ′ such that τ ⊕ τ ′ is
approximately trivial. Finally, two extensions τ1 and τ2 are stably unitary
equivalent if there is a unitary u ∈ Q(B) and a trivial extension τ ′ such that
u∗(τ1 ⊕ τ ′)u = τ2 ⊕ τ ′. We denote by Ext(A,B) the set of stable unitary
equivalence classes of extensions of A by B ⊗ K. Let Ext−1(A,B) be the
invertible elements.
Denote by T (A,B) the set equivalence classes of stably approximately triv-
ial extensions. There is a metric on Ext(A,B) where T (A,B) corresponds
to the closure of the stably trivial extensions; T (A,B) = 0. One can prove
that the Kasparov product is continuous with respect to this topology and
hence see that Ext−1(A,B) ∩ T (A,B) is a group.

Definition. Let A be separable and B be σ-unital. Then we define

KL(A,B) := Ext−1(SA,B)/Ext−1(SA,B) ∩ T (SA,B).

If A is in the UCT class then Pext(K∗(A),K∗(B) ∼= Ext−1(SA,B) ∩
T (SA,B) and by identifying KK(A,B) with Ext−1(SA,B) we get that
KL(A,B) ∼= HomΛ(K(A),K(B)).

16
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3. A new proof of the Kirchberg-Philips theorem/ Gabe

Theorem. (Kirchberg-Phillips) Let A,B be two separable, nuclear, purely
infinite, simple C∗-algebras. Then:

A⊗K ∼= B ⊗K iff A ∼KK B.

Observation: If A,B satisfy the UCT then A ∼KK B is equivalent to
K∗(A) ∼= K∗(B) by an application of the five lemma.

Corollary. If A,B satisfy the conditions of the Kirchberg-Phillips theorem
and in addition they are in the UCT class then

A⊗K ∼= B ⊗K iff K∗(A) ∼= K∗(B).

Goal: Prove the Kirchberg-Phillips theorem more elementary by trans-
fering the ”black box” of understanding to the O2-embedding theorem.
Method: Existence + Uniqueness + O2-embedding theorem.

Existence Part: Lift a KK-element to a ∗-homomorphism.

Theorem. Let A be a separable, nuclear C∗-algebra, B be a σ-unital C∗-
algebra with a properly infinite full projection and α ∈ KK(A,B). Then
there exists a full1 ∗-homomorphim ϕ : A→ B such that KK(ϕ) = α.

We use the Cuntz picture of KK-theory; that is, we tranfer all the infor-
mation of a Fredholm module to the representation and

KK(A,B) = {(ϕ, ψ) : A→M(B ⊗K), ϕ(a)− ψ(a) ∈ B ⊗K ∀a ∈ A}/ ∼ .

Fact: If θ : A → B is a full ∗-homomorphism, we construct an infinite
repeat of θ:

θ∞ = θ ⊕ θ . . .⊕ θ ⊕ . . .
= θ ⊗ 1K

and θ∞ : A→M(B ⊗K). Then any α ∈ KK(A,B) is of the form [ϕ, θ∞].

Lemma (1). There exists a continuous unitary path (ut)t∈[0,∞) in (O2⊗K)∼

such that

• u0 = 1;
• u∗t (1⊗ e11)ut is an approximate identity for O2 ⊗K;
• utx converges as t→∞, for every x ∈ O2 ⊗K.

1It means that Bϕ(a)B = B for every a ∈ A r {0}. It implies simplicity of ∗-
homomorphisms.

17
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Proof. The idea is that there exists some v ∈ U0(O2 ⊗M3) such that

v∗



1

0
0


 v =



1

1
0




�

Lemma (2). Suppose that O2 ↪→ M(B ⊗ K) is a unital embedding. Then
there is an induced unital embedding (O2 ⊗K)∼ ↪→M(B ⊗K) and we have
an analogous version of Lemma 1: There exists a continuous unitary path
(ut)t∈[0,∞) in (O2 ⊗K)∼ ↪→M(B ⊗K) such that

• u0 = 1;
• u∗t (1⊗ e11)ut is an approximate identity for B ⊗K;
• utxu∗t converges as t→∞, for every x ∈ B ⊗K.

Lemma (3). Suppose that θ : A → B is a ∗-homomorphism such that
there exists a unital embedding O2 ↪→M(B)∩ θ(A)′. Then the unitary path
(ut)t∈[0,∞) in (O2 ⊗ K)∼ ↪→ M(B ⊗ K) ∩ θ∞(A)′ from Lemma 2 has the
property:
For every Cuntz pair (Φ, θ∞), there exists a ∗-homomorphism φ : A → B
such that

utΦ(a)u
∗
t → φ(a)⊕ θ(a)⊕ θ(a)⊕ . . . ∀a ∈ A.

Proof. Write

utϕ(a)u
∗
t = ut(Φ(a)− θ∞(a))u∗t + utθ∞(a)u∗t

and the first summand converges since Φ(a)−θ∞(a) ∈ B⊗K and the second
is θ∞(a) because θ∞(a) commutes with ut. Denote the limit by ψ(a). For
every b ∈ B ⊗K we have

‖(1− 1⊗ e11)utbu∗t ‖ = ‖u∗t (1− 1⊗ e11)utb‖
= ‖b− u∗t (1⊗ e11)utb‖ → 0.

As a result (1 − 1 ⊗ e11)ψ(a) = 0 ⊕ θ(a) ⊕ θ(a) ⊕ . . . = ψ(a)(1 − 1 ⊗ e11).
Therefore we let φ(a) = ψ(a)(1⊗ e11).

�

Proof of existence: Since B has a properly infinite full projection, a
standard trick implies that D = O2⊗O2⊗K ⊂ B, and DBD = B. For our
θ we consider the composition

A
ι⊗1⊗e11
↪−−−−−→ D ↪→ B

where ι is a O2-embedding. For the embedding of O2 in M(B) we consider
the following composition:

O2
1⊗id⊗1
↪−−−−→M(D) ↪→M(B)

18
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which commutes with θ(A). In this case the previous results apply and thus
given α = [ϕ, θ∞], the Cuntz pairs (utϕ(·)u∗t , θ∞(·)) give a homotopy from
(ϕ, θ∞) to (φ⊕ θ ⊕ θ ⊕ . . . , θ ⊕ θ ⊕ . . .) ∼ (φ, θ) ∼ φ. �

Uniqueness Part: Prove that the lift is unique up to a particular equiv-
alence relation.

Again we assume A is separable and B is σ-unital. Define

Bas := Cb([0,∞), B)/C0([0,∞), B)

which is called the asymptotic corona algebra or the ”path algebra”.

Definition. A ∗-homomorphism φ : A → B is called strongly O∞-stable if
there is a unital embedding

O∞ ↪→ Bas ∩ φ(A)′
Annφ(A)

where Annφ(A) = {x ∈ Bas : xφ(A) + φ(A)x = {0}}.
So φ is strongly O∞-stable if and only if there exist s1, s2, . . . : [0,∞)→ B

continuous, bounded maps such that

• ‖[si(t), φ(a)]‖ → 0 as t→∞, for all a ∈ A;
• ‖(s∗i (t)sj(t)− δij)φ(a)‖ → 0 as t→∞, for all a ∈ A.

Proposition. If A ∼= A⊗O∞ or B ∼= B ⊗O∞ then any ∗-homomorphism
φ : A→ B is strongly O∞-stable.

Remark. A ∼= A⊗O∞ iff idA is stronglyO∞-stable. The word ”strongly”
comes from the fact, that there is a related notion, that φ is O∞-stable if
the obvious sequential analogue is satisfied.

Definition. We say that two ∗-homomorphisms φ, ψ : A → B are asymp-
totically Murray von-Neumann equivalent (φ ∼asMvN ψ) if there is a con-
tinuous, bounded path (vt)t∈[0,∞) in M(B) such that

• ‖v∗t φ(a)vt − ψ(a)‖ → 0 for every a ∈ A;
• ‖vtψ(a)v∗t − φ(a)‖ → 0 for every a ∈ A.

If the vt’s can be chosen unitary, then we say that φ and ψ are asymptotically
unitary equivalent (φ ∼asu ψ).

Fact: φ ∼asu ψ ⇒ ψ ∼asMvN ψ ⇒ KK(φ) = KK(ψ). In general the
other directions are not true. However,

Proposition. If A,B, φ, ψ are unital or if B is stable then

φ ∼asu ψ ⇔ φ ∼asMvN ψ.

19



UCT

Proposition. Suppose that A is separable and nuclear, and that φ, θ : A→
B are full ∗-homomorphisms. Then,

(1) If θ is strongly O2-stable
2 then φ⊕ θ : A → M2(B) is strongly O∞-

stable.
(2) If φ is strongly O∞-stable , θ is strongly O2-stable, then φ⊕θ ∼asMvN

φ⊕ 0 : A→M2(B).

Remark: We may replace φ with φ⊕θ in the end of the proof of existence.
Note that θ factors through O2, hence it is strongly O2-stable. Thus by the
above proposition, we may assume that φ in the existence theorem is strongly
O∞.

Now we state the theorem of the uniqueness.

Theorem. Let A be a separable, nuclear C∗-algebra, B be a σ-unital C∗-
algebra with a full properly infinite projection. Let also φ, ψ : A→ B be full,
strongly O∞-stable ∗-homomorphisms. Then

φ ∼asMvN ψ ⇔ KK(φ) = KK(ψ).

For the proof we are going to use a theorem of Dadarlat and Eilers.

Theorem. Let A be a separable, nuclear C∗-algebra and B be a σ-unital
and stable C∗-algebra. Let also φ, ψ, θ : A → B be ∗-homomorphisms such
that θ is full and KK(φ) = KK(ψ). Then there exists a continuous unitary
path (wt)t∈[0,∞) in (B ⊗K)∼ such that

‖w∗t (φ(a)⊕ θ∞(a))wt − ψ(a)⊕ θ∞(a)‖ → 0

as t→∞, for every a ∈ A.

Proof of uniqueness: W.l.o.g we can assume that B is stable since
φ ∼asMvN ψ ⇔ φ⊗ e11 ∼asMvN ψ ⊗ e11 as maps from A to B ⊗K.
Pick θ : A→ B as in the proof of existence and from lemma 3) there exists
a unitary path {u′t} ⊂M(B⊗K2)∩θ∞(A)′ where K2 = K(`2(Nr{1})). Let
ut = 1⊕u′t. From the above theorem there is a unitary path (wt) ∈ (B⊗K)∼

and from lemma 2) we have that

pt = u∗t




1
1

0
. . .


ut

2It is defined exactly the same way with strongly O∞-stable, but with O2 instead of
O∞.
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is an approximate identity for B⊗K. If we speed up the ut’s then ‖[pt, wt]‖ →
0. Let

vt =




1
1

0
. . .


utwtu

∗
t




1
1

0
. . .




and a straightforward computation yields φ⊕ θ ∼asMvN ψ ⊕ θ via the vt’s.
Now, φ, ψ are strongly O∞-stable and hence from the last proposition we
equivalently get that φ⊕ 0 ∼asMvN ψ ⊕ 0. �

An immediate corollary of the existence and uniqueness theorems.

Corollary. Let A,B be as above. Then

Homfull
str.O∞

(A,B)

∼asMvN

∼=−→ KK(A,B).

If B is stable then we mod out by ∼asu .

Proof of Kirchberg-Phillips Theorem: Let A,B be two Kirchberg
algebras. Let α ∈ KK(A,B) and β ∈ KK(B,A) implement the KK-
equivalence; αβ = 1A and βα = 1B. Then from the existence theorem there
are φ : A → B and ψ : B → A full, strongly O∞-stable ∗-homomorphisms
such that KK(φ) = α and KK(ψ) = β. Then

KK(φ ◦ ψ) = βα = KK(idB)

KK(ψ ◦ φ) = αβ = KK(idA).

From the uniqueness theorem we get that φ ◦ ψ ∼asMvN idB and ψ ◦
φ ∼asMvN idA. Tensoring with K we get asymptotic unitary equivalence
and hence intertwining gives classification. �
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4. Approaching the UCT via crossed products / Szabó

Major Problem: Do all separable nuclear C∗-algebras satisfy the UCT?

Theorem. The following are equivalent:

(1) Every separable nuclear C∗-algebra satisfies the UCT;
(2) For p = 2, 3 and every action α : Zp y O2, the associated crossed

product O2 oα Zp satisfies the UCT;
(3) For p = 2, 3 and every action α : Zp y W , the associated crossed

product W oα Zp satisfies the UCT;

where W is the Razak-Jacelon algebra.

Remark. This also implies that finite group actions on C∗-algebras are
difficult to study.

Key fact: For p = 2, 3 there exists an action α : Zp y O2 such that

O2 oα Zp ∼KK M
⊕(p−1)
p∞ . We are going to prove it shortly after we see its

usage to prove the theorem.
We are also going to use the fact that any separable, nuclear C∗-algebra

A is KK-equivalent to a unital Kirchberg algebra B. This result is due to
Kirchberg and for completeness we sketch a proof. Assume that A is unital
by adding a unit, if it is necessary. Note that this procedure does not affect
if A remains in the UCT class or not. We can assume that A ∼= A ⊗ Ost

∞

where Ost
∞ = pO∞p for some projection 0 6= p ∈ O∞ with [p] = 0 in

K0(O∞). If this is not the case, we can stabilise with Ost
∞ since this does

not change the KK-equivalence class. If A ∼= A ⊗ Ost
∞, then there is a

natural embedding ι : O2 → A. Let us explicitely choose two isometries
s1, s2 ∈ A with 1 = s1s

∗
1 + s2s

∗
2. By Kirchberg’s embedding theorem, there

exists a natural embedding k : A → O2. Now we define an endomorphism
φ : A→ A via

φ(x) = s1xs
∗
1 + s2(ι ◦ k)(x)s∗2.

Consider the inductive limit B = lim−→{A, φ}, and then B is again separable,
unital, nuclear and O∞-absorbing. Since for all x 6= 0, the element

s2φ(x)s
∗
2 = ι ◦ k(x)

is the image of the full element k(x) ∈ O2, it follows that φ(x) is also full.
Hence B is simple. Finally, it is clear that KK(φ) = 1 + KK(ι ◦ k) =
1 since ι ◦ k factors through O2. In particular, the connecting maps of
this inductive system induce KK-equivalences. Consequently, the canonical
embedding φ∞ : A→ B induces a KK-equivalence. This can be derived by
using Milnor’s lim←−

1-exact sequence for the functorKK(·, B) for the inductive

system {A, φ}.
Proposition. Every separable nuclear C∗-algebra satisfies the UCT if and
only if every unital Kirchberg algebra satisfies the UCT.
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Lemma. Let A be a separable C∗-algebra. If both A⊗M2∞ and A⊗M3∞

satisfy the UCT, then so does A.

Proof. Consider

Z2∞,3∞ = {f ∈ C([0, 1],M2∞ ⊗M3∞) : f(0) ∈M2∞ ⊗ 1, f(1) ∈ 1⊗M3∞}.

Then one obtains the following exact sequence:

0→ SM6∞ ⊗A→ Z2∞,3∞ ⊗A ev0⊕ev1−−−−−→ (M2∞ ⊕M3∞)⊗A→ 0.

Observe that the inclusion C ↪→ Z2∞,3∞ induces aKK-equivalence. Hence
A ∼KK Z2∞,3∞ ⊗ A. Since A ⊗M2∞ and A ⊗M3∞ are in the UCT class
then SM6∞ ⊗ A, lies in there too. As a result, Z2∞,3∞ ⊗ A is in the UCT
class and hence the same holds for A. �

Proof. (theorem) We are going to prove the 2) ⇒ 1) direction by contradic-
tion. From the above Proposition we can assume that the UCT fails for a
unital Kirchberg algebra A. From the Lemma we get that the UCT fails for

A⊗M⊕(p−1)p∞ , for p equals 2 or 3. Choose a model action α : Zp y O2 as in
the ”key fact”. Then

A⊗M⊕(p−1)p∞ ∼KK A⊗ (O2 oα Zp)

∼= (A⊗O2)oid⊗α Zp

∼= O2 oα Zp

which clearly contradicts the assumption. The case for the W algebra uses
an analogous ”key fact”; if the UCT fails, then it fails for a simple TAF
C∗-algebra A with unique trace such that A⊗W ∼=W . �

Proof. (key fact) We do the proof for p = 2. Set B = M2∞ ⊗ Ost
∞. Then

K0(B) ∼= Z[12 ] and B is a Kirchberg algebra. We will express B as an
inductive limit in the following way:

Notation: From Robert’s classification theorem there exists some β ∈
Aut(B) such thatK0(β) = −id. Let B(n) =M2n−1⊗B and β(n) = idM

2n−1
⊗

β. Consider the following connecting maps

ϕn : B(n) ⊕B(n) → B(n+1) ⊕B(n+1),

ϕn(x0 ⊕ x1) =
(
x0

β(n)(x1)

)
⊕
(
x1

β(n)(x0)

)
.

Then it is easy to see that lim−→{B
(n)⊕B(n), φn} is a unital, UCT, Kirchberg

algebra. Note that simplicity comes from the fact that φn’s are full ∗-
homomorphisms. As for the K-theory,
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K0(B
(n) ⊕B(n)) K0(B

(n+1) ⊕B(n+1))

Z[12 ]⊕ Z[12 ] Z[12 ]⊕ Z[12 ]

K0(φn)

(
1−1

−1 1

)

Since

(
1 −1
−1 1

)2

= 2

(
1 −1
−1 1

)
and Z[12 ] is uniquely 2-divisible we

get an isomorphism K0(B∞) ∼= Z[12 ]. Therefore, by classification, we have
B∞ ∼= B.

Now define an action γ : Z2 y B by flipping the direct sums on each
building block. This induces a well defined action on B∞. We compute
K0(φn) ◦K0(γ) = −K0(φn) and hence K0(γ) = −id. The action γ has the
Rokhlin property:

Fact. Let G be a finite group and A is M|G|∞-absorbing C∗-algebra. Let
α : G ↪→ A be a Rokhlin-action. Then

Ki(Aoα G) '
⋂

g∈G

ker(id−Ki(αg))

Therefore K0(B oγ Z2) ' ker(0) ∩ ker(2) = 0 and by classification B oγ

Z2
∼= O2.
Then by Takesaki-Takai duality,

O2 oγ̂ Z2
∼= (B oγ Z2)oγ̂ Z2

∼=M2 ⊗B
= B

∼KK M2∞

�
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5. Tracial Rokhlin Property for Conditional Expectations /
Lee

For this talk all C∗-algebras are separable and unital.

Conditional expectation:
Let P ⊂ A be the inclusion of a unital C∗-algebra with a conditional

expectation E : A→ P .

• A quasi-basis for E is a finite set {(ui, vi)} ⊂ A×A such that every
a ∈ A can be written as a =

∑
uiE(via) =

∑
E(aui)vi.

• When {(ui, vi)}ni=1 is a quasi-basis for E we define

IndE =

n∑

i=1

uivi.

In this case IndE <∞. If there is no quasi-basis then IndE =∞.

Remark:

• IndE is central in A.
• If we know that IndE <∞, then we can choose {(ui, u∗i )} ⊂ A×A.
• IndE ∈ A+.
• IndE is invertible.

Basic construction of a pre-Hilbert P -module:
Using the conditional expectation E we turn A into a pre-Hilbert P -

module by setting < a1, a2 >= E(a∗1a2) and denote by EE the completion
with respect to the inner product. Let ηE : A ↪→ EE be the inclusion, then
the Jones projection ep ∈ L(EE) is defined by

ep(ηE(a)) = ηE(E(a)).

We also have a left action of A on EE given by λ : A → L(EE) where

λ(a)(ηE(x)) = ηE(ax). Define C∗r < A, ep >= span{xepy : x, y ∈ A} =
K(EE).
Proposition. E is of finite index if and only if C∗r < A, ep > has an identity
and there exists c > 0 such that E(x∗x) ≥ cx∗x for x ∈ A.

Note: There is a maximal construction C∗max < A, ep > which is equal
to C∗r < A, ep > if IndE <∞. In that case we will just write C∗ < A, ep >.

Dual conditional expectation:
Let Ê : C∗ < A, ep >→ A be given by xepy 7→ (IndE)−1xy. If {(ui, u∗i )}

is a quasi-basis for E, then {(uiep
√
IndE, (uiep

√
IndE)∗)} is a quasi-basis

for Ê.

Example. Let G be a finite group and α : G y A a saturated (outer)
action. Let E : A → Aα : the fixed point algebra, that is given by E(a) =
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1
|G|

∑
g∈G αg(a). Then A oα G ∼= C∗ < A, ep > and A oα G → A has Ê as

conditional expectation.

Izumi 04’

Definition. Let G be a finite group. We say that α : Gy A has the Rokhlin
property if there is a partition of unity {eg}g∈G: projections in A∞∩A′, such
that αh,∞(eg) = ehg, where α∞ is the induced action Gy A∞.

Definition. Let G be a finite group. Then α : G y A is approximately
representable if there exists U : G → (Aα)∞ such that αg(x) = ugxu

∗
g in

A∞.

The next one is a duality result.

Proposition. Let G be a finite abelian group acting on A. We denote by α̂
the dual action of α on Aoα G. Then

(1) the action α has the Rokhlin property if and only if the dual action
α̂ is approximately representable.

(2) the action α is approximately representable if and only if the dual
action α̂ has the Rokhlin property.

Definition. A conditional expectation E : A→ P is said to have the Rokhlin
property if there exists a projection e ∈ A∞∩A′ such that E∞(e) = (IndE)−1

and the map x 7→ xe, for x ∈ A, is injective.

Definition. A conditional expectation E : A → P is said to be approx-
imately representable if there exists a projection e ∈ P∞ ∩ P ′ and a set
{(ui, u∗i )} ⊂ A×A such that

(1) exe = E(x)e;
(2)

∑
uieu

∗
i = 1;

(3) the map x 7→ xe, for x ∈ P .
We get the following duality result.

Proposition. Let E : A→ P be a conditional expectation with IndE <∞.
Then

(1) The conditional expectation E has the Rokhlin property if and only

if the dual Ê is approximately representable.
(2) The conditional expectation E is approximately representable if and

only if the dual Ê has the Rokhlin property.

Chris Phillips 11’, tracial

Definition. Let A be also simple, infinite dimensional, and let α : G y A
be the action of a finite group G. We say that α has the tracial Rokhlin
property if for every z ∈ A+

∞ there exist mutually orthogonal projections eg
in A∞ ∩A′ such that
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(1) αh,∞(eg) = ehg;
(2) 1 −∑

g∈G eg is Murray-von Neumann equivalent to a projection in

zA∞z.

Definition. Let G a finite abelian group that acts on A by α. We say that α
is tracially approximately representable if for every 0 6= z ∈ A+

∞ there exists
a projection e ∈ A∞ ∩ A′ and a unitary representation w : G→ eA∞e such
that

(1) αg(eae) = wg(eae)w
∗
g;

(2) αg,∞(wh) = wh;

(3) 1− e is Murray-von Neumann equivalent to a projection in zAz.

The analogous duality result is the following.

Proposition. Let G be a finite abelian group that acts on A by α. Then

(1) The action α has the tracial Rokhlin property if and only if the dual
action α̂ is tracially approximately representable.

(2) The action α is tracially approximately representable if and only if
the dual action α̂ is has the tracial Rokhlin property.

Definition. Let E : A → P be a conditional expectation. We say that it
has the tracial Rokhlin property if for every 0 6= z ∈ A+

∞, there exists a
projection e ∈ A∞ ∩A′ such that

(1) E∞(e)IndE = g a projection;
(2) 1− g is Murray-von Neumann equivalent to a projection in zA∞z;
(3) the map x 7→ xe, for x ∈ A, is injective.

Definition. Let E : A→ P be a conditional expectation. We say that it is
tracially approximately representable if for every 0 6= z ∈ A+

∞, there exists a
projection e ∈ P∞ ∩ P ′, some r ∈ A∞ ∩ A′, and a finite set {(ui, u∗i )} such
that

(1) exe = E(x)e;
(2)

∑
uieu

∗
i = r;

(3) re = e = er;
(4) 1− r is Murray-von Neumann equivalent to a projection in zA∞z.

Finally, there is an analogous result.

Proposition. Let E : A→ P be a conditional expectation with finite depth.
Then

(1) The conditional expectation E has the tracial Rokhlin property if and

only if the dual Ê is tracially approximately representable.
(2) The conditional expectation E is tracially approximately representable

if and only if the dual Ê has the tracial Rokhlin property.
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6. Cartan subalgebras, automorphisms and the UCT problem /
Barlak

Question(UCT Problem) Does every separable, nuclear C∗-algebra sat-
isfy the UCT?

A classical result by Kirchberg reduces the UCT problem to Kirchberg
algebras:

Theorem. Every separable, nuclear C∗-algebra is KK-equivalent to a unital
Kirchberg algebra.

In Gabor’s lecture it was shown that this theorem can be used to reduce
the UCT problem to crossed product of the Cuntz algebra O2 by finite group
actions:

Theorem. The following are equivalent:
1) Every separable, nuclear C∗-algebra satisfies the UCT;
2) For p = 2, 3 and for every outer strongly approximately inner action

α : Zp ↪→ O2, the crossed product O2 oα Zp satisfies the UCT.

This reduction of the UCT problem uses that many Kirchberg algebras
(absorbing suitable UHF algebras) can be written as crossed products of O2

by actions of Z2 or Z3.
Here α : Zp ↪→ O2 is said to be strogly approximately inner if

α = lim
n→∞

Ad(un)

for some unitaries un ∈ Oα
2 . This is equivalent to the dual action α̂ : Zp ↪→

O2 oα Zp having the Rokhlin property.
By employing the rigid nature of the Rokhlin property, strongly approxi-

mately inner actions of O2 are particularly nice to work with. In fact, Izumi
successfully classified such actions on O2 in terms of their crossed products
(and some additional information on their dual actions).

It is an open question whether all outer actions of Zp on O2 are strongly
approximately inner.

One may now ask the following:

Question. Let α : Zp ↪→ O2 be an outer strongly approximately action.
What can we say about α if we assume that O2 oα Zp satisfies the UCT?

We will present a structure result for such actions, which involves Re-
nault’s notion of a Cartan subalgebra:

Definition. A C∗-subalgebra B of a C∗-algebra A is called a Cartan subal-
gebra if

1) B contains an approximate unit for A;
2) B is a maximal abelian ∗-subalgebra;
3) C∗({a ∈ A : aBa∗ ⊂ B and a∗Ba ⊂ B}) = A;
4) There exists a faithful conditional expectation A→ B.
(A, B) is called then a Cartan pair.
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We give several examples of Cartan pairs:

Example. 1) (Mn(C), {Diagonal matrices in Mn(C}).
2) (C0(X)oα,r G,C0(X)) with X a locally compact Hausdorff space and

α a topologically free discrete group action;
3) (On,Dn) where Dn is the abelian C∗-subalgebra generated by all range

projections SαS
∗
α, where α is a finite word in {1, . . . , n}.

Many simple, nuclear C∗-algebras that are classifiable (in the sense of the
Elliott program) have Cartan subalgebras.

Renault (2008) has shown that for any Cartan pair (A,B) with A separa-
ble, there exists a twisted etale, locally compact, Hausdorff groupoid (G,Σ)
such that

(A,B) ' (C∗red(G,Σ), C0(G
(0)).

Theorem. Let A be a separable, nuclear C∗-algebra. If A has a Cartan
subalgebra, then A satisfies the UCT.

For C∗-algebras associated with etale, locally compact, Hausdorff groupoids
this is due to a remarkable result of Tu (1999). We basically adapted his
results and techniques to the setting of twisted groupoid C∗-algebras.

Remark. By work of Spielberg (2007) or Katsure (2008) and Yeend (2006
+ 2007), every UCT Kirchberg algebra has a Cartan subalgebra.

Combining this with our result and Kirchberg’s reduction of the UCT prob-
lem to Kirchberg algebras, the UCT problem turns out to have an affirmative
answer if every Kirchberg algebra has a Cartan subalgebra.

A family S ⊂ A of partial isometries in a C∗-algebra is called an inverse
semigroup if it is closed under multiplication and the ∗-operation. Let

E(S) = {e ∈ S : e = e2} = {e ∈ S : e = e2 = e∗}
denote the semi-lattice of idempotent elements and write C∗(E(S)) for the
commutative C∗-subalgebra of A generated by E(S).
Theorem. Let n = pk for some prime number p and some k ≥ 1. Let
α : Zn ↪→ O2 be an outer strongly approximately inner action. Then the
following are equivalent:

1) O oα Zn satisfies the UCT;
2) There exists an inverse semigroup S ⊂ O2 of α-homogeneous partial

isometries such that O2 = C∗(S) and C∗(E(S)) is a Cartan subalgebra in
both Oα

2 and O2 (with spectrum homeomorphic to the Cantor set);
3) There exists a Cartan subalgebra C ⊂ A such that α(C) = C.

Proof. 2)→ 3) is trivial.
3) → 2): Let α : Zn ↪→ O2 be outer strongly approximately inner such

that α(C) = C for some Cartan subalgebra C ⊂ O2. We have to show that
O2oαZn satisfies the UCT. Using Renault’s characterisation of Cartan pairs,
we may identify

(A,C) ' (C∗r (G,Σ), C(G
(0)))
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for a suitable twisted groupoid (G,Σ). Going through the construction of
(G,Σ) and using that α(C) = C, one can see that under this identification
α is induced from a twisted groupoid automorphism. This gives rise to a
twisted semi-direct groupoid (ZnnG,ZnnΣ), One can show that AoαZn '
C∗r (Gn Zn,Σn Zn), from which the UCT for Aoα Zn can be deduced.

1) → 2): Let α : Zn ↪→ O2 be outer strongly approximately inner such
that A := O2 oα Zn satisfies the UCT. Using the Pimsner-Voiculescu se-
quence for Zn-actions, that n is a prime power and Kirchberg-Phillips clas-
sification, one checks that A ' A⊗Mn∞ .

By a result of Izumi, the dual action α̂ = γ : Zn ↪→ A has the Rokhlin
property. Combining results of Katsura and Spielberg, we find an action

β : Zn ↪→ A and an inverse semigroup S̃ ⊂ A of partial isometries such that:

K∗(β) = K∗(γ),

C∗(S̃) = A and C∗(E(S̃)) ⊂ A is a Cartan subalgebra ,

β(C∗(E(S̃))) = C∗(E(S̃)).
Using a model action result of B.-Szabo and Izumi’s rigidity result for actions
with Rokhlin property, we get that

(A, γ) ' lim
k→∞

((C(Zn)⊗M⊗k−1n ⊗A,ϕk),Zn-shift⊗ idM×k−1
n ⊗A,

where

ϕk(f)(m) =

n−1∑

l=0

el,l ⊗ (idM⊗k−1
n

⊗ βl)(f(m+ l)).

Here we use the fact that A absorbs Mn∞ tensorially.
Let B ⊂ A be the abelian C∗-subalgebra corresponding to

lim
k→∞

(C(Zn ⊗D⊗k−1n ⊗ C∗(E(S̃)), ϕk).

It holds that γ(B) = B. Using the explicit inductive limit construction, one
can show that B ⊂ A is indeed a Cartan subalgebra. Similarly, by passing
to crossed products, one shows that B ⊂ A oγ Zn is Cartan subalgebra as
well. (A oγ Zn = O2 oα Zn oα̂ Zn ' O2 by Takai duality). Not that B is

fixed by γ̂ = ̂̂α point-wise.
Let S ⊂ A oγ Zn denote the inverse semigroup generated by all partial

isometries s ∈ A with sBs∗ + s∗Bs ⊂ B and the canonical unitary u ∈
Aoγ Zn implementing γ. Then S is homogeneous for γ̂, C∗(S) = Aoγ Zn

and C∗(E(S)) = B. This yields the assertion for ̂̂α. Employing Takai
dualitym one can deduce from this with some extra work the assertion for
α as well. This shows 2. �

Using this characterisation of the UCT for certain crossed products of O2

and the reduction of the UCT problem from the beginning of the talk, one
can deduce the following further characterisation of the UCT problem:
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Theorem. The following statements are equivalent:
1) Every separable, nuclear C∗-algebra satisfies the UCT;
2) For every prime number p ≥ 2 and every outer strongly approximately

inner action α : Zp ↪→ O2 there exists an inverse semigroup S ⊂ O2 of
α-homorgeneous partial isometries such that O2 = C∗(S) and C∗(E(S)) is
a Cartan subalgebra in both Oα

2 and O2 (with spectrum homeomorphic to the
Cantor set);

3) Every outer strongly approximately inner Zp-action on O2 with p = 2
or p = 3 fixes some Cartan subalgebra C ⊂ O2 globally.

A sufficient condition for an affirmative answer to the UCT problem can
also be formulated in terms of aperiodic automorphisms of O2.

Here α ∈ Aut(O2) is said to be aperiodic if αn is outer for all 0 6= n ∈ Z.
Let us first recall Nakamura’s classification of aperiodic automorphisms

on Kirchberg algebras.

Theorem. Let A be a unital Kirchberg algebra and let α, β ∈ Aut(A) be two
aperiodic automorphisms. Then the following assertions are equivalent:

1) KK(α) = KK(β);
2) α and β are cocycle conjugate via an automorphisms with trivial KK-

class, that is, there exists µ ∈ Aut(A) with KK(µ) = 1A and u ∈ U(O2)
such that Ad(u)α = µβµ−1.

In particular, all aperiodic automorphisms of O2 are cocycle conjugate to
each other.

Proposition. The UCT problem has an affirmative answer if for every
aperiodic automorphism α ∈ Aut(O2) there exists a Cartan subalgebra B ⊂
O2 such that α(B) = B.

Observe that for each aperiodic automorphism α ∈ Aut(O2) it holds that
O2 oα Z ' O2.

Question. Is the converse of the above statement true as well? In other
words, are the following two statements equivalent:

1) Every separable, nuclear C∗-algebra satisfies the UCT;
2) For every aperiodic automorphism α ∈ Aut(O2) there exists a Cartan

subalgebra B ⊂ O2 such that α(B) = B?

We will give an idea of the proof of the last proposition:

Proof. Assume that every aperiodic automorphism of O2 fixes some Cartan
subalgebra. Let m ≥ 2 and let α : Zm ↪→ O2 be an outer action. It suffices
to show that α⊗idO∞

: Zm ↪→ O2⊗O∞ ' O2 fixed some Cartan subalgebra
(globally), as in this case O2 oα Zm satisfies the UCT.

One can find an aperiodic automorphism γ ∈ Aut(O∞) with the property
that there exist natural numbers nk with nk ≡ 1 mod m, k ≥ 1, such that
limk→∞ γ

nk = idO∞
is point-norm topology. Then α ⊗ γ ∈ Aut(O2 ⊗ O∞)

is aperiodic and ((α⊗ γ)nk)k converges to α⊗ idO∞
is point-norm topology.

By assumption, we find some Cartan subalgebra C ⊂ O2 ⊗ O∞ such that
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(α ⊗ γ)(C) = C. However, then (α ⊗ γ)nk(C) = C for all k and therefore
also (α⊗ idO∞

)(C) = C. �
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7. Irreducible representations of nilpotent groups generate
classifiable C*-algebras / Gillaspy

Outline:

• Proof that C∗π(G) satisfies the UCT when G is f.g nilpotent;
• C∗π(G) ∼= pC∗(G/Z(G), ω);
• Structure of C∗π(H) when H is virtually nilpotent.

Classifiability of C∗π(G):
For now:

• G is a finitely generated nilpotent group;
• π is an irreducible unitary representation of G;
• C∗π(G) is the associated C∗-algebra.

We will show that C∗π(G) satisfies the UCT. This implies [Lan73, MR76,
EM15, TWW17] that C∗π(G) is classifiable. Lance proved that C∗π(G) is
nuclear; Moore and Rosenberg proved that every primitive ideal in C∗(G)
is actually maximal. Eckhardt and McKenney proved that C∗π(G) has finite
nuclear dimension.

Nilpotent groups:

Definition. A group G is nilpotent if the series

G . [G,G] . [G, [G,G]] . . . .

terminates in {e}.

Examples:

• Abelian groups
• finite p-groups
• UT (n,Z)

If M,N ∈ UT (n,Z), then MN(NM)−1 ∈ UT (n,Z) has a zero super-
diagonal. If S ∈ UT (n,Z) has a zero super-diagonal, then MS(SM)−1

has two super-diagonals of zeros. Done by induction. �

An example: LetG = UT (4,Z), θ ∈ (0, 1)rQ, Θ the trace on UT (4,Z):

Θ




1 a b c
0 1 d e
0 0 1 f
0 0 0 1


 =

{
e2πicθ, a = b = d = e = f = 0

0, else.

Write πΘ for the GNS representation associated to Θ. Every irreducible
representation of G is of the form πΘ; in fact, [CM84] for any nilpotent
group G, every irreducible representation is of the form πτ for some trace τ .
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Moreover, [EKM16] C∗πΘ
(G) ∼= C∗(G/Z(G), ωθ) ∼= (Aθ ⊗ Aθ) oβ Z. The

twist is given by ωθ(γ, η) = Θ(GH(HG)−1), where G is a representative of
γ with c = 0.

A quick advertisement of classification:
The isomorphisms C∗πΘ

(G) ∼= C∗(G/Z(G), ωθ) ∼= (Aθ ⊗ Aθ) oβ Z arise
from the group structure of G. [EKM16] also found some isomorphisms

Ell(C∗πθ
(G)) ∼= Ell(C∗π

θ̃

(G))

which are not evident from the definition of G or C∗πθ
(G)! Since the alge-

bras C∗πθ
(G) are classifiable, these isomorphisms give us new perspectives on

C∗πθ
(G).

First step:

Theorem (Eckhardt-Gillaspy). If τ is a trace on a f.g nilpotent group G
such that τ(x) 6= 0⇒ x ∈ Gf (x has a finite conjugacy class), then

C∗πτ

∼= C∗πτ
(Gf )o Z · · ·o Z

satisfies the UCT.

Proof.

• G is f.g nilpotent, hence G/Gf is torsion free and f.g nilpotent. The
proof relies on the fact that T (G) is a finite subgroup of G (since G
is polycyclic and thus so are all subgroups).
• G ∼= Gf o Z · · ·o Z.
• Gf/Z(Gf ) is finite; thus, C

∗(Gf ) is subhomogeneous.
• Therefore, C∗πτ

(Gf ) satisfies the UCT by [RS87]. In fact C∗πτ
(Gf ) ∈

N .

�

The main theorem:
Proof that C∗π(G) satisfies the UCT:

• If π is faithful on G ⊂ C∗(G) then π = πτ for an extreme trace τ .
• In this case τ(GrGf ) = 0 [CM84] - so apply the above Theorem.
• If π is not faithful on G ⊂ C∗(G), then replace G by G/ kerπ- also
f.g nilpotent. �

Theorem (Eckhardt- Gillaspy). for G f.g nilpotent and π a faithful irre-
ducible representation of G, there exists an N ≤ Z(G) such that

C∗π(G)
∼= pC∗(G/N, σ)

for a 2-cocycle σ which is homotopic to the trivial 2-cocycle.

Proof. • π is faithful, hence π = πτ for an extreme trace τ .
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• Z(G) is f.g abelian, hence there is an N ≤ Z(G) torsion free, finite
rank.
• Let ω be the restriction of τ to N ; then C∗πτ

(G) ∼= pC∗πω
(G) for a

central projection p. This relies on:
– πτ ≺ πω;
– Conditional expectations Ei : C

∗
i (G)→ C∗i (Gf ) for i = πτ , πω.

– C∗πω
(G) ∼= C∗(G/N, σ) where

σ(sN, tN) = ω(c(sN)c(tN)c(stN)−1)

for a choice c : G/N → G of coset representatives [EKM16].
– Since N ∼= Zd and ω : N → T,

ω ∈ Ẑd ∼= Td

which is path-connected.
�

Structure for virtually nilpotent groups [EGM17]:
Now, let G be a f.g virtually nilpotent group; that is, G has a normal

nilpotent subgroup of finite index, such that G = N oα,ω G/N . Again, π
is an irreducible representation of C∗(G). Via, Stinespring, embed C∗π(G)
into C∗σ(N)⊗MG/N for an irreducible σ. G acts on ker(σ) by conjugation.
Define H = stabG(ker(σ)).

• C∗π(G) is a direct summand of (C∗πτ
(N)oα,ω H/N)⊗MG/H .

• C∗πτ
(N) is a direct sum of simple Z-stable C∗-algebras.

• If H/N is simple, the twisted action (α, ω) must be either strongly
outer, or inner.
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8. Structure and classification of nuclear C*-algebras: The
role of the UCT / Winter

The question whether all separable nuclear C*-algebras satisfy the Univer-
sal Coefficient Theorem remains one of the most important open problems
in the structure and classification theory of such algebras. It also plays an
integral part in the connection between amenability and quasidiagonality. I
will discuss several ways of looking at the UCT problem, and phrase a num-
ber of intermediate questions. This involves the existence of Cartan MASAs
on the one hand, and certain kinds of embedding problems for strongly
self-absorbing C*-algebras on the other.

Theorem (A). [Tikuisis - White - Winter] Let A be a separable, nuclear
C∗-algebra that satisfies the UCT. Then every faithful trace τ ∈ T (A) is
quasidiagonal; that is, there exists an embedding A ↪→ Qω such that it makes
the following diagram commute:

A Qω

C

τ τQω

Note:

• Gabe extended this for A being exact and τ being amenable.
• Very nice alternative proof by Schafhauser.

Idea of proof
We can construct Λ́ so to get the following commuting diagram:

C0(0, 1]⊗A Qω

C

Λ́

L⊗τ τQω

where L is the trace given by Lebesgue integration. To see that, consider
some h ∈ C0(0, 1] with spec(h) = [0, 1]. Then Λ́(t ⊗ 1A) corresponds to h

and by a functional calculus argument we define Λ́.
We do the same for C0[0, 1) and get an Λ̀ such that

C0[0, 1)⊗A Qω

C.

Λ̀

L⊗τ τQω

Now, what we would like is to find a unitary u ∈ Qω such that

u∗Λ́C0(0,1)⊗Au = Λ̀C0(0,1)⊗A (∗)
(in other words to glue Λ́ and Λ̀) and then get an embedding A ↪→ C[0, 1]⊗
A

ρ−→ Qω where ρ is defined as follows:
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Given f ∈ C[0, 1] we can write it as a sum of elements f̀ ∈ C0[0, 1) and

f́ ∈ C0(0, 1], and then ρ(f⊗a) = u∗Λ́(f́⊗a)u+Λ̀(f̀⊗a) which is well-defined
because of (∗). Next note that conjugation by u does not affect the trace.

However, this is too good to be true! What we do instead is to stabilise.

Theorem (B). [Lin - Dadarlat - Eilers] Assume that we are given F ⊂⊂
C0(0, 1) ⊗ A finite, ε > 0, φ, ψ, i : C0(0, 1) ⊗ A → Qω such that KK(φ) =
KK(ψ) and i is ”totally full”; for any non-zero element x , i(x) is full.
Then there are N ∈ N and a unitary v ∈MN+1(Qω) such that

v(φ⊕ i⊕N )v∗ ≈F ,ε ψ ⊕ i⊕N .
The idea is the following: Stabilise Λ̀, Λ́ and get Λ̀⊗1M2N+1

and Λ́⊗1M2N+1

respectively. Then write each diagonal matrix as a column and perform the
following inductive steps. Start with Λ̀⊗1M2N+1

and next write Λ́⊕Λ̀⊗1M2N

in a way that we have stabilised Λ̀ and Λ́ by Λ̀⊗1M2N
. By the above theorem

we get that these two columns are approximately unitary equivalent. Keep
doing this until step N and at step N + 1 change the process and stabilise
from top to bottom. In the end we get a sequence of approximate unitary
equivalences from Λ̀ ⊗ 1M2N+1

to Λ́ ⊗ 1M2N+1
. These can be seen from the

following figure which is a (2N + 1)× (2N + 1) matrix.

Λ̀ Λ́ Λ́ . . . . . . Λ́

Λ̀ Λ̀ Λ́ . . . . . . Λ́

Λ̀ Λ̀ Λ̀ Λ́ . . . Λ́

...
...

... Λ̀
...

...
...

...
...

...

Λ̀ Λ̀ Λ̀ Λ̀ Λ́

Remark(Rørdam): N depends on F , ε but also on φ, ψ, i. Hence it

depends on Λ̀ and Λ́, which depend on N . So we get something circular.

Theorem (C). [Dadarlat - Eilers] Assume that A is in the UCT class.
Then we may choose N to depend only on A,F , ε and the fullness of i.

Therefore with the UCT assumption the above idea works.
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Note: For Theorem A it would suffice to have an embedding

KK(C0(0, 1)⊗A,
∏

N

Qω) ↪→
∏

N

KK(C0(0, 1)⊗A,Qω).

Now if we assume UCT then we get the embedding.

Classification

Definition. Let B be a separable, simple, unital C∗-algebra. We call it
tracially approximately finite dimensional (TAF) if for every F ⊂⊂ B finite,
ε > 0, and 0 6= d ∈ B1

+ there exist a finite dimensional F ⊂ B and x ∈ B1

such that

• 1Fa ≈ε a1F ≈ε 1Fa1F ∈ε F , for every a ∈ F ;
• x∗x = 1B − 1F ;
• xx∗ ∈ dBd.

Suppose that we have φ, ψ : A → B where A is a ”suitable” C∗-algebra,
B is TAF and nuclear and they ”sufficiently agree on K-theory”.

Question: Are φ and ψ some sort of approximately equivalent (s.o.a.u)?
Something like


 φ


 ≈F ,ε



φF 0

0 φ̂


 ∼s.o.a.u



ψF 0

0 φ̂




and then

ψF 0

0 φ̂


 ∼F ,ε,stable uniq.



ψF 0

0 ψ̂


 ≈F ,ε


 ψ


?

But: The required size of F (corresponding to N) depends on φ̂, ψ̂, ψF ,
which depend on smallness of d, hence to the size of F . Again the UCT
sorts this.

Task:

• Make this work for ”TA something”.
• Does ”TA something” cover all { separable, simple, unital, nuclear,
UCT}⊗ UHF?

Theorem. The class { separable, simple, unital, nuclear, Z-stable, UCT
C∗-algebras } is classified by Ell(·).

Problem: Do all separable, nuclear C∗-algebras satisfy the UCT? Now
we quote some intermediate questions. If the above problem has affirma-
tive answer then we may be able to answer them. Consider strongly self-
absorbing / super-simple C∗-algebras.
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Definition. A unital, separable C∗-algebra D 6= C is called strongly self-

absorbing (s.s.a) if there exists an φ : D
∼=−→ D⊗D such that φ ≈a.u 1D⊗1D.

Example. There is an hierarchy Z,M2∞ ,M3∞ ,
un. many

. . . ,Q,O∞,O∞ ⊗
M2∞ , . . . ,O∞ ⊗Q,O2.

Questions:

• Are these all? Equivalently, does every s.s.a C∗-algebra satisfy the
UCT?
• Quasidiagonality question for s.s.a: Is every s.s.a and finite C∗-
algebra quasidiagonal? Equivalently, If D is s.s.a and finite, is it true
that D ↪→ Q?
• Infinite version: If D 6= O2 is s.s.a, is it true that D ↪→unital

Q⊗O∞? The answer is affirmative if D satisfies the UCT.
• Possible values for K0(D)?
• Is there a Künneth formula for D? What is we assume that D is
quasidiagonal or ∞-quasidiagonal?
• If D is quasidiagonal, s.s.a with K0(D) = Z[12 ] and K1(D) = 0, is it
true that D ∼=M2∞?
• In particular assume that D is s.s.a such that D ⊂ M2∞ . Then if
K0(D) = Z[12 ] and K1(D) = 0, is it true that either D ∼= M2∞ or
D ⊂Mp∞ (equivalently D ∼= Z)?

Remark: For a non-UCT example find a s.s.a D with torsion in K0(D)
or K1(D) 6= 0.

Question: How to recover (information about) a C∗-algebra from dimnuc

or decompositon rank (dr) approximately?

Example. Consider A = M2∞ or A = Q. Then drA = 0. We get the c.p
approximations

A A A . . . A

F
(0)
1 F

(0)
2 . . . B

∼=

where the arrows correspond to the c.p maps. Then A and B are isomor-
phic as operator systems. The idea is to recover information about A from
B.
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9. E-Theory and Extensions / Thomsen

E-Theory is the homotopy quotient of the theory of extensions, quote by
Connes and Higson.

Definition. Let A and B be C∗-algebras. An asymptotic morphism from A
to B is a family (φt)t∈[0,∞) of maps from A to B with the following properties:

• the map t 7→ φt(a) is continuous for every a ∈ A;
• the family (φt) is asymptotically multiplicative:

lim
t→∞
‖φt(ab)− φt(a)φt(b)‖ = 0

for every a, b ∈ A, and the same holds for linearity and involution.

We say that two asymptotic morphisms (φt) and (ψt) are equivalent if

lim
t→∞
‖φt(a)− ψt(a)‖ = 0

for every a ∈ A.
A homotopy between asymptotic morphisms (φ

(0)
t ) and (φ

(1)
t ) is an as-

ymptotic morphism (φt) from A to C([0, 1], B) such that φt(a)(0) = φ
(0)
t

and φt(a)(1) = φ
(1)
t for all t ∈ [0,∞) and a ∈ A. We denote the set of

homotopy classes of asymptotic morphisms from A to B by [[A,B]].
An important feature of asymptotic morphisms is that they induce maps

on K-theory. Let (φt) be an asymptotic morphism from A to B, and p a
projection in A. Then for t sufficiently large, φt(p) is close to a projection
q in B. The class of q in Proj(B) is independent of the choices made, and
eventually we get induced maps φ∗ : K0(A)→ K0(B).

A very important example of asymptotic morphism is the Connes-Higson
connecting morphism. Consider a short exact sequence of separable C∗-
algebras,

φ : 0→ B → E
p−→ A→ 0

and choose a cross section s for p. Choose an approximate unit (ut) for B
which is quasicentral for E;

lim
t→∞
‖ute− eut‖ = 0

for every e ∈ E. Then define CH(φ)t : SA→ B by

CH(φ)t(f ⊗ a) = f(ut)s(a).

One can prove that this is indeed an asymptotic morphism since (f(ut)) will
still be quasicentral for E and hence

lim
t→∞
‖f(ut)s(a)g(ut)s(b)− (fg)(ut)s(ab)‖ =

lim
t→∞
‖f(ut)s(a)g(ut)s(b)− (fg)(ut)s(a)s(b)+(fg)(ut)(s(a)s(b)−s(ab))‖ = 0

since s(a)s(b) − s(ab) ∈ B. The class [CH] ∈ [[SA,B]] is independent of s
(up to equivalence) and of (ut).
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If we consider asymptotic morphisms from A to B ⊗ K, we can define
addition just like in Ext by fixing an isomorphism from M2(K) to K. and
taking the orthogonal sum. In this way [[A,B⊗K]] is an abelian semigroup.

There is another addition if we consider asymptotic morphisms (φt), (ψt)
from A to SB. We can move them homotopically to asymptotic morphisms
(φ′t) and (ψ′t), whose ranges are supported on (0, 12) and (12 , 1) respectively.
Then (φ′t + ψ′t) is an asymptotic morphism from A to SB which depends
only on the homotopy classes [φ] and [ψ]. This addition is not commutative
in general but it coincides with the previous if B is stable.

An inverse for an asymptotic morphism (φt) from A to SB is given by
(φt ◦ (ρ⊗ id)) where ρ : S → S is ρ(f)(s) = f(1− s).

Definition. Let A and B be separable C∗-algebras. Then E(A,B) :=
[[SA, SB ⊗K]].

Hence it natural to define a composition product E(A,B) × E(B,C) →
E(A,C). First we note that, any asymptotic morphism (φt) from A is
equivalent to an asymptotic morphism (φ′t) that is uniform on every norm-
compact subset of A. Second, any two equivalent asymptotic morphisms are
homotopic by the ”straight line”.

Theorem. (1) If A,B and C are separable C∗-algebras and (φt) and
(ψt) are uniform asymptotic morphisms from A to B and B to C
respectively, then for any increasing parametrisation r of the interval
[0,∞) that grows sufficiently quickly, the family (ψr(t) ◦ φt) is an
asymptotic morphism from A to C.

(2) The resulting asymptotic morphism depends only on [φ] and [ψ] and
hence defines a composition [[A,B]] × [[B,C]] → [[A,C]] that is as-
sociative and agrees with the ordinary composition for homomor-
phisms.

Thus there is an additive category E whose objects are C∗-algebras and
the morphisms from A to B are the groups E(A,B). One can prove that
E(·, B) (resp. E(A, ·)) is a homotopy invariant, stable, half-exact covariant
(resp. contravariant) and satisfies Bott periodicity. It is a universal functor
in the sense that any functor on SC∗ to an additive category A that is
homotopy invariant, stable and half-exact factors uniquely through E.

Finally, we note that if A is a separable, nuclear C∗-algebra, then E(A,B)
is naturally isomorphic with KK(A,B) for every separable C∗-algebra B.
The canonical functor from KK(A,B) to E(A,B) is given by the Connes-
Higson morphism in the following way: KK(A,B) ∼= KK(SA, SB ⊗ K) ∼=
Ext(A,SB ⊗ K)

CH−−→ [[SA, SB ⊗ K]] = E(A,B). The inverse map is given
by the universal property of E. For every separable C∗-algebra D we have
a pairing KK(A,D) × E(D,B) → KK(A,B). For D = A, consider the
homomorphism that we get from the pairing with 1A and this will give an
inverse.
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Goal: To see if the Connes-Higson map CH : Exth(A,B)→ [[SA,B]] is
an isomorphism of semigroups for a general separable C∗-algebra A and a
stable σ-unital C∗-algebra B. If it is not stable put B ⊗ K. The quote of
Connes and Higson implies that CH is an isomorphism. Is it?

Note: As we have seen, if A is nuclear then Ext(A,B) coincides with
Exth(A,B) and CH is an isomorphism. From now on A is separable and B
is σ-unital and stable.

A quick recap on the notion of homotopy for extensions. Two extensions
0 → B → E0 → A → 0 and 0 → B → E1 → A → 0 are homotopic if there
is a third one such that

0 B E0 A 0

0 IB E A 0

0 B E1 A 0

ev1

ev0

In the Busby-invariant picture we have φ0 : A → Q(B) and φ1 : A →
Q(B) respectively, and a homotopy between them is a Busby-invariant φ :
A→ Q(IB) such that evaluation at 0 and 1 gives φ0 and φ1.

Definition. An extension 0 → B → E
p−→ A → 0 is asymptotically split if

there is an asymptotic morphism (φt) from A to E such that p ◦ φt = id for
all t ∈ [0,∞).

We say that an extension is semi-invertible if it is stably asymptotically
split.

Theorem. When A is a suspension; meaning that A = SD for some C∗-
algebra D, all extensions of A by B are semi-invertible and hence Exth(A,B)
is a group.

Theorem. If A is a suspension, then CH is an isomorphism of groups.

Define Ext−
1

2 (A,B) ↪→ Exth(A,B) to be the group of semi-invertible
extensions modulo the asymptotically split ones. So for A = SD, we have

that Ext−
1

2 (A,B) = Exth(A,B) and CH : Ext−
1

2 (A,B) → [[SA,B]] is an
isomorphism of groups.

Question: Are all extensions semi-invertible?
Answer: No.
Question: Is CH an isomorphism?
Answer: No.

Example (Wassermann). There exists a representation π : SL3(Z) →
B(H) such that the C∗-algebra E = C∗(π(SL3(Z)),K) defines a non semi-
invertible extension

φ : 0→ K→ E → E/K→ 0.
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Furthermore, this extension is non semi-invertible in homotopy; that is, in
Exth(A,B) and also CH(φ) = 0. As a result, CH is not an isomorphism.

But on the other hand there is a big class of C∗-algebras A for which their
extensions by B are all semi-invertible. For example, for every n ∈ N we get
a group Exth(C

∗
r (Fn), B) for stable B.

New question: Is it true that Ext−
1

2 (A,B) ∼= Ext−1(A,B) and CH :

Ext−
1

2 (A,B)→ [[SA,B]] is an isomorphism?
The following is a partial answer since it gives a criterion to check if CH

is an isomorphism.

Theorem (Manuilov, Thomsen). Let A,A′ be C∗-algebras such that there
exist asymptotic morphisms φ : A→ A, λ : A→ A′, µ : A′ → A, and that

[idA] + [φ] = [µ] · [λ]
in [[A,A]] where · is the product of homotopy classes of asymptotic mor-

phisms. Then if CH : Ext−
1

2 (A′, B) → [[SA′, B]] is an isomorphism we

have that CH : Ext−
1

2 (A,B)→ [[SA,B]] is also an isomorphism.

Question: Is CH : Exth(A,B)→ [[SA,B]] surjective?

Answer: The question is still open. But we can exactly describe the
image. For that consider a quasicentral approximate unit {un}n∈N ⊂ B for
E such that unun−1 = un−1 for all n ∈ N. Let s : A→ E be a cross-section
for p : E → A and f ∈ C0(R, A). Define

φt(f) =

∞∑

j=0

∆js(f(t− tj))∆j

where ∆j =
√
uj − uj−1, and tj ∈ [0,∞) such that limj→∞ tj = ∞ and

limj→∞(tj − tj−1) = 0.
Let τs(f)(t) = f(t− s) be the R-action. Then

φt(τs(f)) = φt−s(f) (∗).
Denote the homotopy classes of asymptotic morphisms that satisfy (∗) by
[[SA,B]]τ .

Theorem. The Connes-Higson map CH : Exth(A,B)→ [[SA,B]]τ is sur-
jective.
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10. Trace Scaling automorphisms of W ⊗K / Nawata

The algebra W
W is a certain simple separable nuclear stably projectionless C∗-algebra

with a unique tracial state τ and K0(W) = K1(W) = 0. W can be con-
structed as an inductive limit of type I C∗-algebras. It is alsoKK-equivalent
to {0} and O2.

Note: A C∗-algebra A is said to be stably projectionless if A ⊗ K has
no non-zero projections. In particular, every projectionless C∗-algebra is
non-unital.

Properties of W (Razak)

(1) Every automorphism of W is approximately inner.
(2) W ∼=W ⊗M2∞

(Note that if A is a simple separable C∗-algebra satisfying the UCT
with a unique tracial state and dimnuc(A) < ∞, then A ⊗W ∼= W
by the classification theorem of Gong-Lin and Elliott-Niu.)

(3) (Evans, Kishimoto-Kumjian, Dean, Robert)
There is a flow γ on O2 such that W ⊗K ∼= O2 oγ R.

(4) If α is an automorphism of W ⊗ K, then there is a positive real
number λ(α) such that

τ ⊗ Tr ◦ α = λ(α)τ ⊗ Tr
because W has a unique tracial state τ .

(5) For any λ > 0, there is an automorphism α on W ⊗ K such that
λ(α) = λ.

(6) Let α, β ∈ Aut(W⊗K). Then α is approximately unitarily equivalent
to β if and only if λ(α) = λ(β).

Main results

Theorem. Let α and β be automorphisms of W ⊗ K such that λ(α) 6= 1
and λ(β) 6= 1. Then

α ∼o.c β ⇔ λ(α) = λ(β).

Note: We say that α is outer conjugate to β (α ∼o.c β) if there is
γ ∈ Aut(W ⊗K) and u ∈ U(M(W ⊗K)) such that α = Ad(u) ◦ γ ◦ β ◦ γ−1.
Theorem. Let α and β be automorphisms of W. Assume that αn and βn

are strongly outer for any n ∈ Z r {0}. Then α is outer conjugate to β.
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Strategy

(I) Rokhlin type theorem (Projections in Aω ∩A′)
(II) Homotopy type theorem (Unitaries in Aω ∩A′)

(I)+(II)
Herman−Ocneanu
============⇒ the stability of α

EK−intertwining arg.
==============⇒ Main Thm.

If A is stably projectionsless, then Aω ∩A′ is stably projectionless.

Kirchberg’s central sequence C∗-algebras
Let ω : free ultrafilter on N and put

Aω := `∞(N, A)/{(an)n : lim
n→ω
‖an‖ = 0}

and Aω := Aω ∩A′. Also, let
Ann(A,Aω) := {(an)n ∈ Aω : lim

n→ω
‖anb‖ = 0 for any b ∈ A}.

Then Ann(A,Aω) is an ideal of Aω and define

F (A) := Aω/Ann(A,A
ω).

If A is unital, then F (A) = Aω. Now, let {hn}n∈N be an approximate unit
for A. Then [(hn)n] = 1 in F (A). We have that F (A⊗K) ∼= F (A).

Every automorphism α of A induces an automorphism of F (A). We
denote it by the same symbol α.

Rokhlin type theorem

Theorem. Let α be an automorphism of W ⊗K such that λ(α) 6= 1. Then
α has the Rokhlin property; that is, for any k ∈ N, there exist projections
{e1,0, e1,1, . . . , e1, k − 1, e2,0, . . . , e2,k} in F (W ⊗K) such that

• ∑k−1
j=0 e1,j +

∑k
j=0 e2,j = 1;

• α(e1,j) = e1,j+1;
• α(e2,j) = e2,j+1.

Theorem. Let α be an automorphism of W. Assume that αn is strongly
outer for any n ∈ Z r {0}. Then α has the Rokhlin property.

Homotopy type theorem

Theorem. Let u be a unitary element in F (W). Then there exists a con-
tinuous path of unitaries U : [0, 1]→ F (W) such that

• U(0) = 1;
• U(1) = u;
• Lip(U) ≤ 2π.
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Lemma. Let u and v be unitaries in F (W) such that τω(f(u)) > 0 and
τω(f(v)) > 0 for any f ∈ C(T)+ r {0}. Then there exists some unitary
w ∈ F (W) such that

wuw∗ = v ⇔ τω(f(u)) = τω(f(v))

for every f ∈ C((T ).

Properties of F (W)

(I) (Essentially shown by Matui and Sato)
F (W) has a unique tracial state τω. It also has strict comparison;
that is, for any a, b ∈ F (W)+,

dτω(a) < dτω(b)⇒ ∃r ∈ F (W) s.t rbr∗ = a.

(II) Let a ∈ F (W)+ such that dτω(a) > 0. For any t ∈ [0, dτω(a)), there is

a projection p ∈ aF (W)a such that τω(p) = t.
(III) Let p and q be projections in F (W). Assume that τω(p) < 1 and

τω(1) < 1. Then
p ∼MvN q ⇔ p ∼u q.
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11. Partitions of unity and the Toms-Winter Conjecture/
Castillejos

Toms-Winter Conjecture: LetA be a simple, separable, unital, infinite
dimensional, nuclear C∗-algebra. The following are equivalent:

(1) dimnucA <∞
(2) A⊗Z ∼= A
(3) A has strict comparison.

There is a W ∗ analog of this conjecture. First we give some definitions.
Let M be a von Neumann algebra with separable predual.

Definition. M is injective if for some faithful representation π : M →
B(H) there exists a conditional expectation E : B(H)→M .

Remark: Nuclearity in this analogy is the C∗-version of injectivity.

Definition. M is hyperfinite if there exists an increasing family of finite

dimensional von Neumann algebras {Fn}∈N such that M = ∪nFn
SOT

.

Remark: The C∗-version of it is finite nuclear dimension.

Definition. M ⊂ B(H) is a factor if the center Z(M) =M ′ ∩M = C1M .

Remark: The C∗-version of it is simplicity.

Definition. A factor M is of type II1 if there exists a faithful normal (ultra
weakly continuous) trace.

Example. R = �∞n=1M2
SOT

is the only hyperfinite II1 factor.

Theorem (Connes). If M is an injective II1 factor then M is hyperfinite;
M ∼= R.

The idea of the proof is:

(1) M is hyperfinite
(2) M is McDuff; M⊗R ∼=M
(3) M is injective

and (3)⇒ (2)⇒ (1). We see that this is the analog of the Toms-Winter
conjecture.

Key Step: Assume a unique trace T . Then we can produce a map
M → Rω = `∞(R)/{{xn} : limn→ω T (x

∗
nxn) = 0}.

Note: For the case of C∗-algebras, assume that T ∈ ∂eT (A) (extreme
trace). Then πT (A)

′′ ∼= R and we can produce a map A → Aω/JAω

∼= Rω,
where JAω

= {(an) ∈ `∞(A) : limn→ω T (a
∗
nan) = 0}. When T (A) is a Bauer

simplex; that is, T (A) 6= ∅ and ∂eT (A) is compact, we can do the above
procedure in a continuous way by forming the bundle C(∂eT (A), R).

Definition. A II1 factor M has property Γ if Mω ∩M ′ 6= C1.
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Proposition (Connes). If M is injective then it has property Γ.

Remark: R has property Γ , while LF2 does not. Therefore, R 6∼= LF2.

Theorem (Dixmier). A II1 factor M has property Γ if and only if for every
n ∈ N there are pairwise orthogonal projections p1, . . . , pn ∈ Mω ∩M ′ such
that TMω(pi) =

1
n .

Observation:

• T (pix) = 1
nT (x) for every x ∈M .

• IfM has property Γ, thenMn(C) ↪→Mω in such a way thatDn(C) ⊂
Mω ∩M ′.

Remark: McDuff factors have property Γ. More generally, if M has
property Γ, then M⊗N has property Γ for any N . However, property Γ
does not imply McDuff property.

Definition. Let A be a separable, unital C∗-algebra with T (A) 6= ∅. We
say that A has property Γ if for each n ∈ N there exist pairwise orthogonal
positive e1, . . . , en ∈ Aω ∩A′ such that T (aei) =

1
nT (a) for every a ∈ A and

T ∈ T (Aω).

Example. Q,Z,Z-stable C∗-algebras have property Γ.

A new partition of unity argument

Definition. Let A be a separable, unital C∗-algebra with T (A) 6= ∅. We
say that A has complemented tracial orthogonal partition of unity (CPoU)
if for every family of positive a1, . . . , ak ∈ A and δ > 0 such that

supT∈T (A)mini=1,...,kT (ai) < δ

(for every T ∈ T (A) there are ai such that T (ai) < δ), there exist pairwise
orthogonal positive contractions e1, . . . , ek ∈ Aω ∩A′ satisfying

π(
∑

ei) = 1 and τ(aiei) < δT (ei).

Theorem. Let A be a simple, separable, unital, nuclear C∗-algebra with
property Γ. Then A has a CPoU.

Coming back to Toms-Winter conjecture we consider the following corol-
lary.

Corollary. A simple, separable, unital, nuclear and Z-stable C∗-algebra has
a CPoU.

Theorem. A simple, separable, unital, nuclear and Z-stable C∗-algebra A
has dimnucA ≤ 1.

Lemma. Let A be separable, unital, nuclear C∗-algebra with T (A) 6= ∅ and
a CPoU with no finite dimensional representation. Then for every n ∈ N

there exists a unital embedding Mn(C) ↪→ Aω ∩A′/JAω
.
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Corollary. Such a C∗-algebra if it has the property Γ and strict comparison,
then it is Z-stable.
Theorem. Let A be a simple, separable, unital, infinite dimensional, nu-
clear C∗-algebra. The following are equivalent.

(1) dimnucA <∞
(2) A⊗Z ∼= A
(3) A has strict comparison and property Γ.
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12. UCT and groupoid C∗-algebras / Renault

Let G be locally compact, Hausdorff groupoid with a Haar system. Jean-
Louis Tu in 1999 proved that if G is topologically amenable, or more gener-
ally, if it satisfies Haagerup’s property, then its C*-algebra C∗(G) satisfies
the UCT. We will present the main ideas of the proof.

Theorem (Tu, 99). Let G be a σ-compact locally compact Hausdorff groupoid
with Haar system. If there exists a proper G-affine euclidean bundle, then
its C*-algebras (full or reduced) satisfy the UCT.

The existence of a proper G-affine euclidean bundle is the Haagerup
property. This property is satisfied in particular when G is topologically
amenable.

Strategy of the proof
The proof of the UCT, as well as the Baum-Connes conjecture hinges on

the construction of a G-algebra A and elements α ∈ KKG(C0(G
(0)), A) and

β ∈ KKG(A,C0(G
(0))) such that

α⊗A β = 1 in KKG(C0(G
(0)), C0(G

(0)))

Applying the descent functor, one obtains that C∗(G) is KK-subequivalent
to the crossed product C*-algebra A o G. Since A o G has the UCT, one
concludes through the easy

Lemma. The UCT is preserved under KK-subequivalence.

G-spaces and G-bundles
A space Z is G- proper if G?Z → Z×Z, (γ, z) 7→ (γz, z) is proper; that

is, for every L,M ⊂ Z compact, the set {γ ∈ G : γL∩M 6= ∅} is compact.
Then the quotient space Z/G is locally compact Hausdorff in the quotient
topology and the quotient map is open.

We define the groupoid G to be proper if G(0) is a proper G-space. Hence
Gn Z is proper if Z is a proper G-space.

Let X be a locally compact topological space. A C0(X)-algebra is a pair
(A, θ) consisting of a C∗-algebra A and a homomorphism θ : C0(X) →
ZM(A) such that θ(C0(X))A = A. Such an algebra can be canonically
identified with the algebra of continuous sections of a bundle having for
fibre over x ∈ X, the algebra Ax = A/CxA where CxA = {f ∈ C0(X) :
f(x) = 0}.

Let A be a C0(G
(0))-algebra. The action of G on A is given by C∗-

algebra isomorphisms aγ : As(γ) → Ar(γ), for every γ ∈ G, such that for any

composable pair (γ, γ′) ∈ G2 we have aγγ′ = aγaγ′ . We call such an algebra
a G-algebra. Note that a Gn Z-algebra is a G-algebra.
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Definition. A G-algebra A is proper if it is a GnZ-algebra for some proper
G-space Z.

Euclidean Affine Space
An Euclidean space is seen as an affine space E on which the vector space

~E acts by translations: E × ~E → E by (e + ~a) 7→ ~a. Consider a family
of euclidean affine spaces E =

∐
x∈X Ex over a locally compact Hausdorff

topological space X in a way that we get a continuous bundle p : E → X.

In this way p : ~E → X is a Hilbert bundle.
Suppose that X = G(0) and consider an action of G on E and a unitary

representation L on ~E such that Es(γ) → Er(γ), γ(e+~a) = γe+L(γ)~a. We
say that a subset M of E is bounded if there exists a continuous section a
of p : E → G(0) and R > 0 such that for all e ∈M , d(e, a(p(e)) ≤ R.
Definition. E is called G-proper if for all L,M ⊂ E bounded, the set
{γ ∈ G : γL ∩M 6= ∅} is relatively compact.

Choose a section x → ex ∈ Ex of p. Then γes(γ) = er(γ) + c(γ) where
c ∈ Zn(G, p∗E) (cocycle) such that c(γγ′) = c(γ) + L(γ)c(γ′).

Definition. The groupoid G has satisfies the Haagerup’s property if there
exists a proper Euclidean affine G-bundle.

U. Haagerup has shown that the free groups have this property by showing
the existence of a conditionally negative type function which is proper.

Amenable groupoids
Let (G, λ) be be a locally compact groupoid with Haar system. Its regular

G-Hilbert bundle L2(G, λ) is defined by its fibers L2(Gx, λx), its fundamental
family of continuous sections Cc(G) and the action L(γ)f(γ1) = f(γ−1γ1).

Definition. One says that G is amenable if there exists a sequence (ξn) in
Cc(G)

+ which, viewed as sections of the Hilbert bundle L2(G, λ), satisfy

(i) ‖ξn(x)‖ → 1 uniformly on compact subsets of G(0);
(ii) ‖L(γ)ξn(s(γ))− ξn(r(γ))‖ → 0 uniformly on compact subsets of G.

Amenability implies Haagerup Property
One considers the regular real Hilbert bundle with infinite multiplicity

~E = L2(G, λ)⊗ `2(N) with fibers L2(Gx, λx)⊗ `2(N) and linear action L⊗1.

One chooses

(i) an increasing sequence (Kn) of compact subsets exhausting G(0);
(ii) an increasing sequence (Ln) of compact subsets exhausting G;
(iii) a sequence (ξn) in Cc(G)

+ such that ‖ξn(x)‖ = 1 for x ∈ Kn and
‖L(γ)ξn(s(γ))− ξn(r(γ))‖ ≤ 1/n for γ ∈ Ln.
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Then,

c(γ) =
∑

N

(L(γ)ξn,s(γ) − ξn,r(γ))⊗ en

belongs to ~Er(γ) and c : G→ p∗ ~E is a one-cocycle, i.e. it satisfies

c(γγ′) = c(γ) + (L(γ)⊗ 1)c(γ′)

One checks easily that c is proper: for r > 0, the set of γ’s such that
‖c(γ)‖ ≤ r is compact. Then,

A(γ)ξ = (L(γ)⊗ 1)ξ + c(γ)

defines a proper affine isometric action of G on ~E.

The space Z of an euclidean affine space
Let E be an euclidean affine space. If E is not finite dimensional, it is

not locally compact and C0(E) is not suitable. However, it has a substitute
which is defined as an inductive limit. The main observation is that for an
inclusion U ⊂ V of finite dimensional subspaces, the map

πU,V : R+ × V → R+ × U
(t, v) 7→ (

√
t2 + ‖ ~uv‖2, u)

where u is the orthogonal projection of v on U , is proper and these maps
define a projective system.

Definition. The space Z of E is the projective limit of this projective sys-
tem.

As a set, it can be identified to R+ × E through similar maps πU,E .

A proper G-space
This construction is still valid when E be an euclidean affine bundle over a

locally compact space X and produces a locally compact space Z = R+×E.
If E is a G-euclidean affine bundle, we define γ(e, t) = (γe, t) for γ ∈ G and
(e, t) ∈ Z.
Lemma. Let E is a G-euclidean affine bundle, then

(i) Z is a G-space;
(ii) if E is a proper G-euclidean affine bundle, then Z is a proper G-space.

The algebra of an euclidean affine space
Again, when the euclidean affine space E is not finite dimensional, al-

gebras such that C0(E,Cliff(E)) cannot be defined. Here is a substitute
defined as an inductive limit. To each finite dimensional subspace U , one
associates the graded C*-algebra

C(U) = C0(T
∗U,End(Λ∗~U)⊗ C)),
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where End(Λ∗~U) is graded by the even and odd degree and its graded sus-
pension

SC(U) = S⊗̂C(U)

where S = C0(R) is graded by the even and odd functions.

The inclusion
An inclusion U ⊂ V of finite dimensional subspaces gives an injective

∗-homomorphism jV,U : C(U)→ A(V ) as follows.

The orthogonal decomposition V = U + ~W gives the tensor decomposition

A(V ) = A(U)⊗̂A( ~W ).
The inclusion jV,U is essentially given by the ∗-homomorphism

ϕW : C0(R)→ C0(R)⊗̂A(W )

f 7→ f(X⊗̂1 + 1⊗̂c)
where X and c are unbounded multipliers: X is the function t 7→ t on R

and, for w ∈ T ∗W =W⊗C, c(w) = ext(w)+ext(w)∗ is the complex Clifford
multiplication.

The inductive limit
One can check that the system is inductive. This provides the C*-algebra

A = A(E) = lim−→U
SA(U) of the euclidean affine space E.

Since C0(R+ × T ∗U) = C0(R)even ⊗ C0(T
∗U,C) embeds into

SA(U) = C0(R)⊗̂C0(T
∗U,End(Λ∗~U)⊗ C))

as a central subalgebra and the embedding jV,U is compatible with πT ∗U,T ∗V ,
A is a Z-algebra, where Z is the locally compact space constructed from the
euclidean affine space T ∗E as above. The same construction applies when
E is a G-euclidean affine bundle and provides a GnZ-algebra A. Therefore,
if G acts properly on E, then A is a proper G-algebra.

AoG belongs to N
Lemma. Let A be a G-algebra, where the fibers of A are type I and G is
a proper groupoid with Haar system. Then the crossed product A o G is a
type I C*-algebra.

Proposition. Let A = A(E) be the G-algebra constructed from a proper
euclidean affine G-bundle E. Then the crossed product AoG is an inductive
limit of type I C*-algebras.

Idea of the proof: functional calculus
More details: We may assume that G(0) = Z and that G is proper.

From a G-invariant strictly positive compact operator T , one constructs by
functional calculus an increasing sequence of G-invariant finite-dimensional
subspaces (Vn) which exhaust E and defines An = S⊗̂C(Vn). It is a type I
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C*-algebra and it union is dense in A. Then An oG is type I and its union
is dense in AoG.

the KK-theory elements η and D
The unbounded multiplier X of S defines an unbounded multiplier of

the A-Hilbert module A which has a compact resolvent: this defines η ∈
KKG(C0(G

(0)), A). The element D ∈ KKG(A,C0(G
(0))) is constructed

from a continuous field of G-algebras (At) over [0,∞] where A∞ = A and At

is an algebra of compact operators for t finite and an unbounded multiplier
(Dt) with D0 = 0 and D∞ is the Clifford multiplication c.
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13. Villadsen algebras and some regularity conditions / Bosa

Definition. Let A be a C∗-algebra. We may say that a, b ∈ A+ are Cuntz
subequivalent (a � b) if there exists {xn}n∈N ⊂ A such that

‖xnbx∗n − a‖ → 0.

We say that a, b are Cuntz equivalent (a ∼ b) if a � b and b � a. We define

Cu(A) = (A⊗K)+/ ∼
and with [a] + [b] = [a ⊗ b] it becomes an abelian monoid with partial order
[a] ≤ [b]⇔ a � b.
Theorem. Cu is continuous; Cu(lim−→Ai) = lim−→Cu(Ai).

Note: We consider the limit in a new category where the Cuntz semi-
group lies.

Definition. Given a separable, nuclear, simple C∗-algebra A, the Cuntz
semigroup Cu(A) has w-comparison if given x, y1, . . . , yn . . . such that x <s

yj (there is kj ∈ N : (kj + 1)x < kjy)) for every j, we have x ≤∑∞
j=1 yj.

Definition. Given a separable, nuclear, simple C∗-algebra A, the Cuntz
semigroup Cu(A) has the Corona Factorisation Property (CFP) if given
x, y1, . . . , yn . . . there exists m ∈ N such that if x ≤ myj for all j, we have
x ≤∑∞

j=1 yj.

Theorem. Under our assumptions w-comparison implies CFP.

Example. The other direction is not true in general. Consider [0, 1]∪{∞}.
Here we have x+ y > 1 ⇒ x+ y = ∞. This satisfies CFP. However, if we
choose x = 3

4 and yi =
1

2i+2 we get x <s yj for all j but x 6≤∑∞
j=1 yj.

Villadsen algebras of type I and II

Type I: unital, simple AH-algebras with srA = 1. (Inspired by Rørdam’s
and Tom’s examples)

Type II: unital, simple AH-algebras with unique trace and can get any
stable rank and real rank. In particular, they are not Z-stable.
Definition. Let X,Y be compact Hausdorff spaces. A ∗-homomorphism
φ : C(X)⊗K→ C(Y )⊗K is called diagonal if there exist k ∈ N, λ1, . . . , λk :
Y → X and natural orthogonal projections p1, . . . , pk ∈ C(Y )⊗K such that

φ = (idC(Y )⊗a)◦(φ̂⊗idK) where a : K⊗K ∼=−→ K and φ̂(f) =
∑k

i=1(f ◦λi)pi.
Denote by k : N∞ × N→ N,

(k, n) 7→
{
kn!n, k <∞
n2n!, k =∞.
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• k 6=∞: Denote Xk
n := Dk × CP k(k,1) × . . .× CP k(k,n).

• k=∞: Denote X∞n := Dn2n! × CP k(∞,1) × . . .× CP k(∞,n).
• We have that Xk

0 = Dk, hence Xk
n = Xk

n−1 × CP k(k,n).

• We have that X∞0 = D, hence X∞n = Dn2n!−(n−1)3(n−1)2 × X∞n−1 ×
CP k(∞,n).

Denote the canonical projections by π1k,n : Xk
n → Xk

n−1 and π2k,n : Xk
n →

CP k(k,n). Define the diagonal maps φ̃kn : C(Xk
n)⊗K→ C(Xk

n+1)⊗K arising

from the tuple (π1k,n+1, θ1) ∪ (y
(k)
n,j , ζ

(k)
n+1)

n+1
j=1 where (y

(k)
n,j)

n+1
j=1 are chosen so

that the resulting C∗-algebra is simple and θ1 is the trivial line bundle.

Let pk0 ∈ C0(X
k) ⊗ K be a projection of rank 1 and pkn = φ̃n,0(p

k
0). Define

Ak
n = pkn(C(X

k
n)⊗K)pkn and φkn = φ̃kn|Ak

n
. Then the Villadsen algebra is given

by the inductive limit
Vk = lim−→(Ak

n, φ
k
n).

Consider any vector bundle η over Xk
i and one has

(φki )
∗(η) ∼= π1∗k,i+1(η)⊕ (i+ 1)rank(η)ζki+1,

where (φki )
∗ denotes the induced map from isomoprhism classes of vector

bundles over Xk
i to isomorphism classes of vector bundles over Xk

i+1.

Theorem. (Villadsen) For each k ∈ N∞

• Vk has unique trace;
• sr(Vk) = k + 1 and sr(V∞ =∞;
• k < RR(Vk) < k + 1.

Theorem. (Bosa - Christensen) For the class of Villadsen algebras of type
II, w-comparison is equivalent with the CFP. Also,

• Vk has w-comparison for every k 6=∞.
• V∞ does not have CFP.

Lemma. Let k ∈ N∞. For each n ∈ N there exist projections en, q
(n)
1 , . . . , q

(n)
n ∈

Vk ⊗K such that

(1) en � q(n)i ⊕ q(n)i for all i = 1, . . . , n;

(2) en 6� q(n)1 ⊕ . . .⊕ q(n)n ;

(3) τ(q
(n)
1 ⊕ . . .⊕ q(n)n )→n k and τ(en)→n 0.
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