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Abstract. For a given monic polynomigh(r) of degreen over a commutative ring, the
splitting algebrais the universat-algebra in whichp(r) hasn roots, or, more precisely, over
which p(¢) factors,

pt) =@ =8 (1 = &).

The symmetric groui®, for 1 < r < n acts on the splitting algebra by permuting the first
r rootséy, ..., &-. We give a natural, simple condition on the polynomig) that holds if
and only if there are only trivial invariants under the anto In particular, if the condition
on p(¢) holds then the elements bfare the only invariants under the action®f.

We show that for any > 2 there is a polynomiap(r) of degree: for which the splitting
algebra contains a nontrivial element invariant unégr The examples violate an assertion
by A. D. Barnard from 1974.

1. Introduction. Consider commutative algebras over a fixed commutativekiggO.
Fix a monic polynomiap(z) of degreen > 1 with coefficients irk:

p(t) =aot" +ait" '+ +ait +a,, ao=1. (1.1)

Forr = 0,1,...,n let Split'(p) = Split"(p/k) be ther’th splitting algebraof p(z),
universal with respect to factorizations,

pt)=(t—&)--- (@t —&)pQ), (1.2)
with r factorst — &;. In other words, such a factorization exists in Sppb[¢], with

elementssy, ..., & in Split"(p) and a polynomiap(¢) € Split"(p)[t], and if A is any
k-algebra over whichp(¢) factors,

p(t) = —oa1) - —o)q(t), (1.3)
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then there is a unique-algebra homomorphism Sgliiy) — A such that; — «; for
j=1,...,r,and, consequently(r) is mapped tg (z). The completg splitting algebra
of p(¢) is obtained whem = n; thenp(z) in (1.2) andg () in (1.3) are equal to 1.

Clearly, ther’'th splitting algebra is generated by theuniversal rootsty, ..., &,
in (1.2). It follows from the construction of Splitp) in Section 2 that the natural
map Split(p) — Split’(p) is an injection, identifying Split(p) with the subalgebra
k[&1, ..., &]of Split"(p) = k[&1, ..., &l

Let ¥, be the element of defined as the produst, = [];_; (& +§;). The product
is a symmetric polynomial in the rootg, ..., §,, and hence¥, a polynomial in the
coefficientsz; of p(¢). In particular,¥, € k. There is a simple determinantal formula for
v, see Definition4.

It follows from the universal property that the symmetriogp&,, acts on the complete
splitting algebra Split(p) by permuting the rootéy, ..., &,. Obviously, the elements of
the algebra Splitp) = k[&1, ..., & ] are invariant (or fixed) under the action of the
subgroups), _,. consisting of permutations i&,, fixing the numbers 1 .., r. The main
result of this paper is the following characterization tfgdfTheorem 7.

Result. The invariants are trivial:k[&1, . . ., £,]Sn— = k[&1, ..., &] forr =0, ..., n, if
and only ifAnn, ¥, N Ann, 2 = (0).

In particular, the equalitk[&1, ..., &]°" = k holds if Ann, ¥, N Ann;2 = (0).
Barnard [Ba, p. 289] asserted the equalityfor 3 without any condition omp(r). We
show by a counterexample that the general assertion isuet tr

Let p)(r) be the polynomiap(r) in (1.2). Then the factorization has the form,

p(t) = p()p" (1), wherep,(t) i=(t —&1)...(t — &). (1.9)

Let K, = Fact (p) be thek-subalgebra of Split p) generated by the elementary symmet-
ric polynomialsirgy, .. ., &, or, equivalently, by the coefficients pf (+). Then both poly-
nomialsp) (r) andp, (¢) have coefficients ik ,. Under the condition Ann,NANN, 2 =

(0) on p(t), we prove in Proposition 11 that the elementKgfare the only invariants of
the action of&, on ther'th splitting algebra, that is[£1, ..., £]° = K,.

2. Construction. A construction of the complete splitting algebra is givefBa, p. 286],
in [Bo, p.IV.67, 85], and in [PZ, p. 30]. We recall here theuesive construction of the
intermediate algebra$ := Split"(p) forr =0, ..., n:

Obviously, So = Split’(p) = k. Forr = 1, the equation (1.3) holds if and only if
a1 € A is aroot ofp(r). The universal algebra in which(r) has a root is obtained by
adjoining formally a rootof p(¢):

S1 = Splitt(p) := k[x]/(p(x)), & = (x modp(r)).
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Assume thas, := Split"(p/k) has been defined in general, fok n, with a factorization
(1.2). Then, clearly, we obtaif) 1 by adjoining formally aroot op ) (¢), or, equivalently,
as ther'th splitting algebra ofp™V () over Sy

Split t*(p/k) := Split'(p"/s,) = Split” (pP/S1).

3. Proposition. The monomialg1£y - -- & whereO < i, <n —vforv=1,...,r
form ak-basis for ther'th splitting algebraSplit"(p). In particular, Split"(p) is free of
rankn(n — 1) --- (n — r + 1) as ak-module, andplit” (p) is free of ranka!.

Proof. The assertion follows by induction anfrom the recursive definition of Splitp).

Note. It is an easy consequence of the Proposition that the &ots. , &, aren different
elements in Split(p) except whem = 2,a1 = 0, and 2= 0 ink.

4. Definition. Consider in Split(p) = k[&1, ..., &,] the Vandermonde determinant,,

Ay =TG-8 =) (signo)o (&) 16372 &, 1),

i<j ceG,

and the two elementg,, and Discy,

v, = H(Si +&;) and Discp, = ]—[(g,- — )2,

i<j i<j

The element Disgr = Af) is of course thaliscriminantof p(z).

The elementsl, and Discy, are symmetric polynomials in the rodls, ..., &,, and
consequently can be expressed as polynomials in the ceetficof p(¢). In particular,
the element®, and Discy, belong tok.

It is well known that¥,,, as a polynomial in th¢;, is a Schur polynomial, see [Mc,
Example 7, p. 46] or [Mu, formula 339 p. 334]. As a polynomialthe elementary
symmetric polynomials; it is the determinan® = det(ey;_;), see [Mc, Formula (3.5),
p. 41]. In terms of the coefficients = (—1)'¢; of p(t) we obtain the expressiob, =
(=" D/2 detlazi— ),

ao 0 0 0 0
az ai ag 0 0
v, = (_1)n(n—1)/2 as as a ai 0
azp—2 a2p—3 A2p—4 A2p—3 -+ Q-1
In particular, in low degrees: For = 1: W = 1,forn = 2: W = —aj, forn = 3:
2 2

¥ = a3 — ajaz, and forn = 4: ¥ = ajazaz — afas — aj.
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5. Lemma. Assume forn > 2that F € k[£1] is Go-invariant. Then:
Q) If n > 3, thenF € k.
(2)If n =2, thenF = b&1 + ¢, withb, c € kand2b = W ,b = 0.

Proof. Let ¢ be the non-trivial permutation i62, acting on the second splitting algebra
k[&1, &2] by interchangings; and&;. By assumptionF € k[&1] andtF = F. Write

F in the formF = Q(&1), whereQ € k[x] is a polynomial of degree less than say

0 =bx" 14 cx"24.... ThenQ(&) = Q(£1). So the polynomial(x) — Q(£1) in
k[£1][x] has&o as a root. Henc@(x) — Q(&1) is a multiple of p® (x). As p@D (x) is
monic of degree: — 1 it follows by comparing the degrees and the leading coefiisi
that

Q(x) — Q1) = bpP (x). (5.1)
After multiplication byx — &1, we obtain the following equation ik{&1][ x]:
(Q(x) — Q&) (x — &1) = bp(x). (5.2)

Compare the coefficients of"~1 in the equation. Ifz > 3 we obtain the equation
—b&1 + ¢ = ba1. In particular,bé; € k, and hencé = 0. From (5.1) we conclude that
the polynomialQ(x) is a constant. Henc€é = Q(&1) belongs tok. Thus Part (1) has
been proved.

The case: = 2 is easily treated directly. Alternatively we may use (5R(uating the
coefficients ofx gives the equatior-2b¢, = ba;. Herea; = —(§1 + &) = -V, and
hence 2&; = W, b. Asé;, 1arelinearly independent oviefit followsthat = W,6 = 0.
Thus Part (2) has been proved.

6. Proposition. Assume forn > r > 1thatF € k[&1, ..., & ] is &, 1-invariant. Then:
Q) If r <n—2thenF € k.
(2)If r =n —1then2F e kandV¥, F € k.

Proof. SetS; := k[&1, ..., §]. ThenS; = S;_1[£;]isthefirstsplitting algebra i~V (¢)
overS;_1. The degree op¥ b isn — j + 1, and hence at least 3jf< n — 2.
Therefore, under the assumptions in Part (1), it followsdpeated application Lemma
5(1) thatF € S;_1for j =r,..., 1. With j = 1 it follows thatF e k.
For Part (2), note first that the assertion #o 2 follows from Lemma 5(2). Proceed
by induction onn > 3. Note that Split(p) is the complete splitting algebra of (r)
overk[&1]. Clearly

by = dW,0 whered:=]] __ € +§).

Moreover,® € k[&1]; in fact ® = (=1)""1p®D(—&1). By induction, 2 and W F
belong tok[£1]. So both products 2 and ¥, F belong tok[£1]. As both products are
&, -invariant, it follows from Lemma 6 (1) that they belongio
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7. Theorem. Let S = Split"(p/k) = k[&1, ..., &,] be the complete splitting algebra of
p(t). Assume that > 2. Then the following conditions gm(z) are equivalent:

(i) Anng Discr, NAnng 2 = (0).
(i) Anng W, N Anng 2 = (0).

(i) 592 = k&1, ..., &u2].
(iv) S€n—r =k[&1,...,&]forr =0,1,...,n—2, where& . denotes the subgroup
of permutations ir&,, fixing the numberg, ..., r.

Proof. For an elemenF e S and a subse¥ C S denote byF|V the restriction toV of
multiplication by F. Consider with/ := Anng 2 the following three conditions:

(i) KerDiscr, [I = (0), (i) Ker ¥,|I = (0), (>ii*) Ker (&,—1+&)|I = (0).

The algebras is free as &-module and the elements, and Discy, belongk. Hence (i)
is equivalent to (i*) and (ii) is equivalent to (ii*). Se&%._o> = k[&1,...,&—2]. ThenS
is the complete splitting algebra oV, . . ., £,_1] of the degree 2-polynomigt®—2).
By Lemma 5 (2), (iii) holds if and only if Ang, , 2N Anng, ,(§,—1 + &,) = (0). Again,
ass is free oversS,_», the latter condition holds if and only if (iii*) holds.

Sincel = Anng 2 it follows thatW,|I = A,|I. Hence Discy |I = (\IJ,,|I)2. Conse-
quentlyW, |1 is injective if and only if Discy, | is injective. Hence (i*}=> (ii*).

Again, V¥, |I is the product of the factoxg; +-¢;)|/ fori < j. Hence, if¥| ] isinjective,
then the factoK&,_1+&,)|1 is injective. Assume conversely that the factyr_1+&,)|1
is injective. Then, since the gro, acts by automorphisms 6f every factor; +£;)|/
(with i < j) is injective, and hence the produkt! is injective. Hence (ii*)<= (iii*).

Obviously (iii) is part of the conditions in (iv), and henae)& (iii). Clearly, to finish
the proof it suffices to show that (ii) implies that the eqtyailn (iv) for » = 0 holds. So
assume thaf” € S is G,-invariant. Then, by Proposition 6 we have the relatiofis=2 0
and¥, F = 0. The relations mean that#f is expanded in terms of the basis in Proposition
3 then all coefficients to base elements different from 1 areralated by 2 and byv,,.
Therefore, if (ii) holds then all these coefficients vanisiat is, F € k.

8. Corollary. If any of the three elementg, or Discr,, or ¥, is a non-zero divisor i,
then the conditions of the Theorem hold. In particular, then

k[EL, ..., &]%" =k. (8.1)

Proof. Clearly, under the given assumptions either (i) or (ii) & fheorem holds. Hence
(iv) holds, and in particular (8.1) which is the special case 0 of (iv) holds.
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9. Notes. The results in the Corollary for the elements 2 and Djseere proved by Pohst
and Zassenhaus [PZ, (2.18d), p.46 and (3.6), p. 49] and amdifferent proof, by Laksov
and Ekedahl [EL, Theorem 5.1 and Remark 5.3, p. 13-14]. RolZassenhaus also
proved the assertion in Proposition 6 (2), but with replaced by Disgy.

It was asserted by Barnard [Ba, Proposition 4, p. 289] treetjuality (8.1) holds for
alln > 2. However, a simple counterexample shows that the assedionot hold in the
stated generality: Consider the splitting algebra of tHgrmpamial p(r) = t"* (n > 2). Itis
easy to see, by inductionen=1,...,n — 2, thatgf‘1 - &g = 0. It follows easily
foro € G, that

o (8716072 g, 1) = (signo)E] LE) 2 g, g

Hence forz € Anny 2 the elementgf‘lgg“2 ... &,_1 is invariant, and it is non-trivial if
z # 0. A second family of non-trivial invariants is given in Expha 10.

Itis an open question, at least to the knowledge of the auttieether the equality (8.1)
implies the stronger conditions in Theorem 7.

10. Example. A natural idea to construct invariants in Splip) (n > 2) is to write the
Vandermonde determinant, as the difference,

Ap=AT—AT AT =3 o(5 T ),

oeA,

where the sum is over all even permutations. Thenand A~ are invariant under even
permutations and interchanged by odd permutations. licpéat, if z € k thenzA™ is
invariant undes,, if and only if z is in the kernel of multiplication by\ , as a mag — S.
But naturally, even it # 0 andzA, = 0, it may happen thatA* = 0.

In particular, assume thate Ann; 2. Then, as noted abovep, = z¥,, and hence
zA;,L is invariant if and only ifz € Ann, W,. Forn = 2 orn = 3 itis easy to see that
the invariants of the complete splitting algebra are thenel@sc + zA;; for ¢ € k and
z € Anng 2N ANN, W,,.

11. Proposition. Fix r with1 < r < n and letK = Fact(p) be thek-subalgebra of
Split” (p) generated by the elementary symmetric polynomials in tte footsé,, . . ., &,
or, equivalently, by the coefficients of the polynomiak) := (+ — &1) - - - (t — &,). Then,
in K[¢] we have the factorization,

p@) = p, () p (1), (11.1)

of p(¢) into two monic factors, the first of degreand the second of degree-r. Moreover,
the k-algebra K is universal with respect to this property. Furthermoree thlgebra
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Split"(p) = k[&1, ..., & ] is the complete splitting algebra of the degregolynomial
pr(t) overk:

Split’ (p/k) = Split” (p,/K). (11.2)

Finally, if the equivalent conditions of Theoreftold for p(z), then

k[€1, ..., &]° =K. (11.3)

Proof. The equation (11.1) is simply (1.2). The polynomjgks) has, by construction,
coefficients ink . Therefore, by (11.1), so hag” (¢).

Obviously, the polynomiap, () € K|[t] splits completely ovesS, = k[&1, ..., & ].
To prove (11.2), we verify that the splitting is universat &sume thatg: K — A is an
algebra such thai, (1) factors completely ovet with r factorsr — «;. Then we obtain in
A[r] the factorization (1.3) wherg(r) is the image imA[¢] of p”(¢). So, by the universal
property ofS, = Split"(p/k), there is a uniqué-algebra homomorphism: S, — A
such thatp(§;) = «j for j = 1,...,r. It remains to prove thap is a mapkK -algebras,
that is,¢ is equal tapg on thek-subalgebra& of S,. The equality results from the fact that
under both maps the coefficientsgf(r) are mapped to the signed elementary symmetric
polynomials of thex;. So the two maps agree on the coefficientp,af), and sinceX is
generated as/aalgebra by these coefficients, the two maps agrek on

The universal property ok with respect to factorizationg(t) = g (¢)q(t) with two
factors of degreesandn — r is proved similarly: Assume that such a factorization exist
over ak-algebraA. SinceK is generated by the coefficients pf(¢) there is at most
onek-algebra homomorphist — A under whichp, (t) is mapped t@;(¢). To prove
the existence, consider the complete splitting alg@braf g () over A. Then there is a
k-algebra homomorphisrsi. — 7, such that th&; are mapped to the roots §fz). In
particular,p, (¢) is mapped t@(¢). As K is generated by the coefficients pf(r), and the
coefficients of7 (r) belong toA, we obtain the maX — A as the restriction of the map
S, — T,.

To prove the final assertion, consider the equivalent canditof Theorem 7. Assume
that they hold forp(¢). Note that the factors defining the produigs, are also factors of
V. Therefore,

Anng 2N Anng ¥, € Anng, 2N Anng, W,,.

Sinces, is free overk, condition (ii) for p(¢) implies that the right hand intersection is
trivial. Therefore the left hand intersection is is trivi#that is, condition (ii) holds for
pr() in K[t]. Moreover,k[&1, ..., & ] is the complete splitting algebra ¢f.(r) over K
by (11.2). Therefore, by the Theorem, condition (iv) holdis, (¢); in particular (11.3)
holds.
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12. Note.The algebra Splitp) is free overk of rankn(n — 1)---(n — r + 1) by
construction, and it is free ov&k = Fact (p) of rankr! by (11.2). We showed in the
paper with D. Laksov [LT] thak = Fact(p) is in factk-free of rank("), generated by
suitable Schur polynomials i, .. ., &. The paper describes in addition the connection
between splitting algebras and intersection rings of Gnasmians (Schubert Calculus).

REFERENCES

[Ba] A.D.BarnardCommutative rings with operators (Galois theory and ramatfien), Proc. London
Math. Soc. (3R8(1974), 274—-290.

[Bo]  N. Bourbaki,Eléments de Mathématique, Algébre, Chapitres 4kdsson, Paris, 1981.

[EL]  T.EkedahlandD. Laksogplitting algebras, symmetric polynomials, and Galoistiyel. Algebra
Appl. 4 (2005), 59-75.

[LT] D. Laksov and A. Thorup Schubert calculus on Grassmannians and exterior powladiana
Univ. Math. J.58,No. 1 (2009), 283-300.

[Mc] I. G. Macdonald, Symmetric Functions and Hall Polynomia&econd Edition, Oxford University
Press, Oxford, 1998.

[Mu]  T.Muir, ATreatise on the Theory of Determinarevised and enlarged by W. H. Metzler, Dover,
New York, 1960.

[PZ] M. Pohstand H. Zassenhaddgorithmic algebraic number theorincyclopedia of Mathematics
and its Applications, Cambridge University Press, 1989.



